Data: 18 Luglio 2022

Il testo deve essere riconsegnato nella cartellina. Non è ammessa la consultazione degli appunti e dei compiti precedenti. Si possono consultare i data sheet. Non usare il colore rosso nello svolgimento.

ESERCIZIO N°1

5 punti

Progettare una rete combinatoria, facente uso di blocchi noti (porte logiche elementari, multiplexer, full-adder, ecc.) in grado di eseguire la somma o la sottrazione (su controllo si un segnale SUM!/SUB) di 2 numeri relativi a 4 bit, rappresentati in C1 e il cui risultato (per il risultato scegliere il numero di bit minimo che garantisce in ogni caso la rappresentabilità) sia pure rappresentato in C1.

ESERCIZIO N°2

8 punti

Realizzare una subroutine per il microcontrollore AVR XMEGA256A3BU che valuta in R16 la parte intera della radice quadrata del valore senza segno contenuto in X (cioè nella coppia di registri R27:R26).

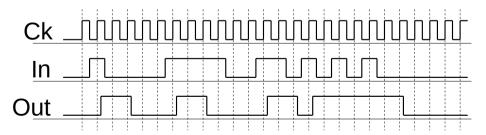
ESERCIZIO N°3

5 punti

Realizzare in forma SP ottima una rete combinatoria a 5 ingressi (X_4 , X_3 , X_2 , X_1 e X_0) e una uscita non completamente definita, che ha la tabella di verità seguente:

Indicare tutti gli **implicanti essenziali** della funzione, evidenziando un mintermine che giustifica l'indicazione di essenziale.

ESERCIZIO N°4

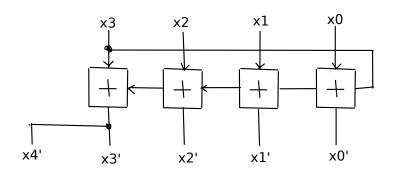

5 punti

Avendo a disposizione chip di memoria SRAM da 1 M x 3 (costo $0.30 \in$) e da 2 M x 5 (costo $0.85 \in$), progettare un modulo di memoria da 4 M x 17 a costo minimo.

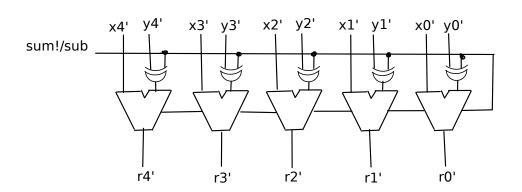
ESERCIZIO N°5

6 punti

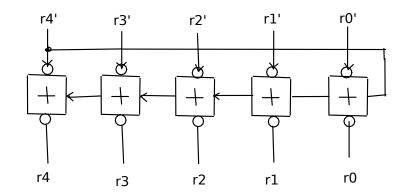
Disegnare lo schema logico di una macchina sequenziale sincrona secondo il modello di Moore con un ingresso e una uscita; quando la macchina rileva un fronte in salita dell'ingresso (campionato su 2 fronti di clock consecutivi) la macchina reagisce ponendo in uscita un impulso di 2 cicli di clock. La presenza di un ulteriore fronte durante l'impulso ne prolunga la durata, che si protrarrà in ogni caso per 2 cicli dopo l'ultimo fronte in salita rivelato in ingresso. Si hanno a disposizione D-FF e porte logiche elementari (AND, OR, NOT).


ESERCIZIO N°6

4 punti


Disegnare lo schema logiche di un *D*-latch con abilitazione e reset prioritario, usando solo NOR (e NOT).

Analisi del range (C1) per somma-sottrazione Range degli operandi [-7..7] Range del risultato [-14..14]: sempre rappresentabile con 5 bit


Strategia: converto in C2, estendo, uso un comune somma-sottrattore, riconverto in C1

C1->C2+ext per entrambi gli operandi



somma-sottrattore in C2 a 5 bit

C2->C1 su 5 bit non si può avere OV

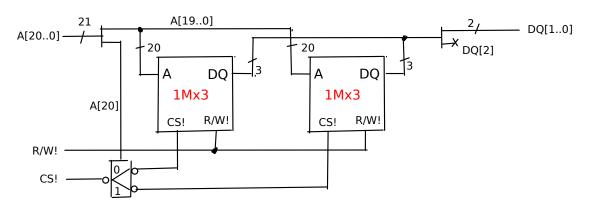
```
sqrt: //metodo per approx successive
 push R0
 push R1
 push R17
 clr R16
 ldi R17,0b10000000 //tentativo iniziale
  add R16,R17 //aggiunge al tentativo
  mul R16,R16 //esegue il quadrato
  cp XL,R0
  cpc XH,R1
  brcc s2
   sub R16,R17 //tentativo abortito
  s2:
  Isr R17 //divide per 2
  brne s1
 pop R17
 pop R1
 pop R0
ret
```


X3,	K2								
X1,X0	00	01	11	10		00	01	11	10
00	0	4	12	8		16	20	28	24
01	1	5	13	9		17	21	29	25
11	3	7	15	11		19	23	31	27
10	2	6	14	10		18	22	30	26
		X4=	=0		,		X4=	=1	

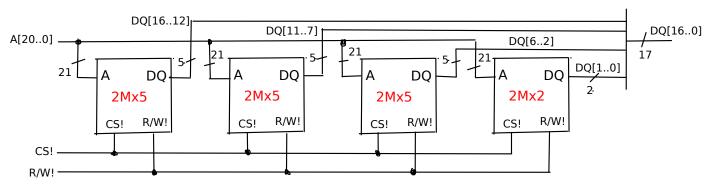
C'è un unico implicante essenziale; gli 1 rimanenti possono essere coperti con 3 implicanti principali (non essenziali), per un totale di 13 letterali (quello proposto non è l'unico modo).

Eseguo inizialmente l'analisi dei costi, riconducendomi a sottomoduli con lo stesso numero di parole (4M) composti con i 2 tipi diversi di chip

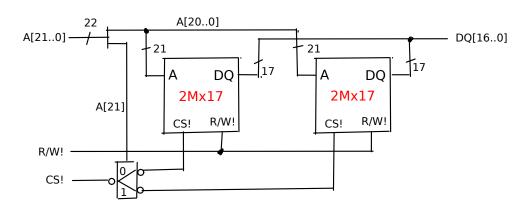
A: 4Mx3 (1,20 €)

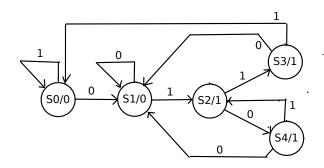

B: 4Mx5 (1,70 €); costo al bit minore

Combinazioni possibili per ottenere 4Mx17 e costo relativo


4B (3 bit in eccesso) 6,80 €3B+A (1 bit in eccesso) 6,30 € soluzione a costo minimo 2B+3A (2 bit in eccesso) 7,00 €B+4A (senza sprechi) 6,50 €

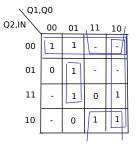
6A (1 bit in eccesso) 7,20 €


Modulo da 2Mx2 (con 2 chip da 1Mx3)

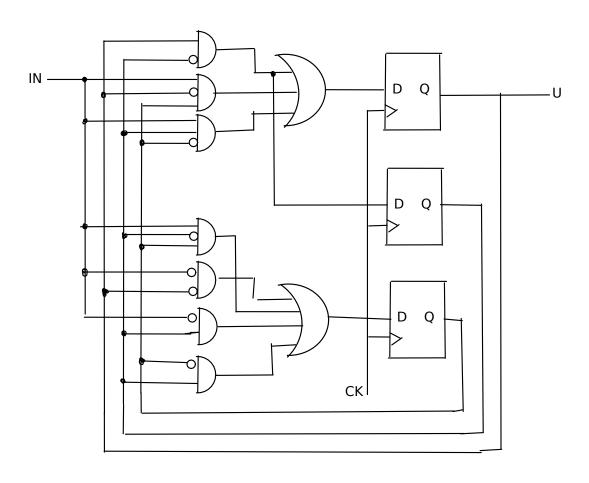

Modulo da 2Mx17 (con 3 chip da 2Mx5 e un modulo da 2Mx2)

Modulo finale da 4Mx17 (con 2 moduli da 2Mx17)

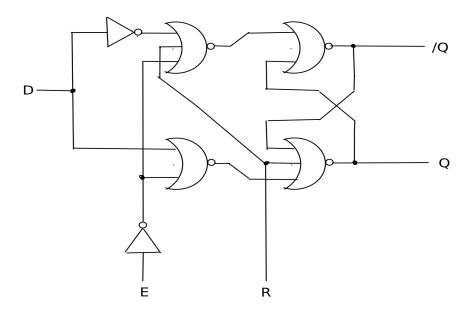
Codifica degli stati (e rete per U)


	q2	q1	q0	U	
S0	0	0	0	0	
S1	0	0	1	0	
S2	1	0	1	1	
S 3	1	1	_	1	
S4	1	1	0	1	

Con questa codifica U=q2


Q1,Q0						
Q2,IN	. 00	01	11	10		
00	001	001				
01	000	101				
11		111	000	101		
10		110	001	001		

√Q1,Q0						
Q2,IN	00 01		11	10		
00	0	0	-	-		
01	0	1	-	-		
11	-	1	0	1		
10	-	1	0	0		


Q1,Q0						
Q2,IN	00 01		11	10		
00	0	0	-	-		
01	0	0	-	-		
11	-	1	0	0		
10	-	1	0	0		

D2=Q2Q1!+INQ2!Q0+INQ1Q0! D1=Q2 Q1! D0=IN! Q2!+IN! Q1+Q1 Q0!+IN Q1! Q0

