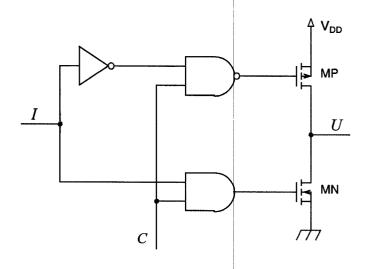
SCHEDA N°D001 Nome		Data: 23/05/2002 Valutazione:	

ESERCIZIO N°1

6 punti

In tabella sono riportati i parametri elettrici dell'inverter della famiglia logica A. Determinare il massimo fan-out N.


V_{OHmin}	4 V
I_{OHmax}	-10 mA
$V_{\rm OLmax}$	1 V
I _{OLmax}	17.5 mA
$V_{ m IH}$	3.6 V
$I_{ m IH}$	1 mA
$V_{ m IL}$	1.5 V
$I_{ m IL}$	-2 mA

N	

ESERCIZIO N°2

6 punti

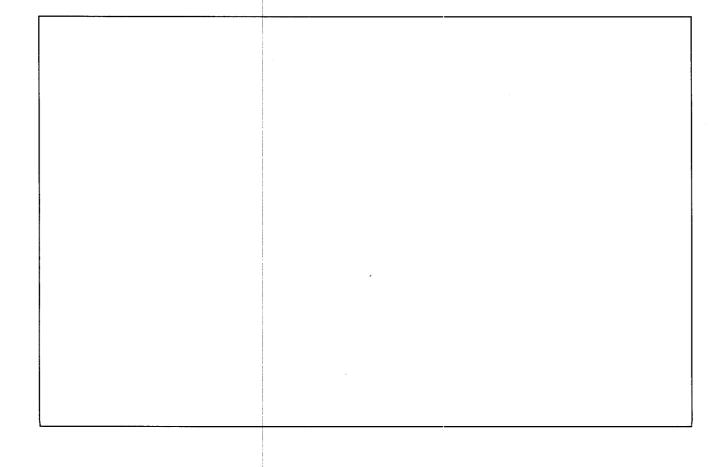
Completare la tabella di verità relativa al circuito di figura. Si utilizzino i simboli 1, 0, Z e X.

C	I	U
0	0	
0	1	
1	0	
1	1	

ESERCIZIO N°3

5 punti

Determinare la forma somma di prodotti di costo minimo della seguente funzione combinatoria.

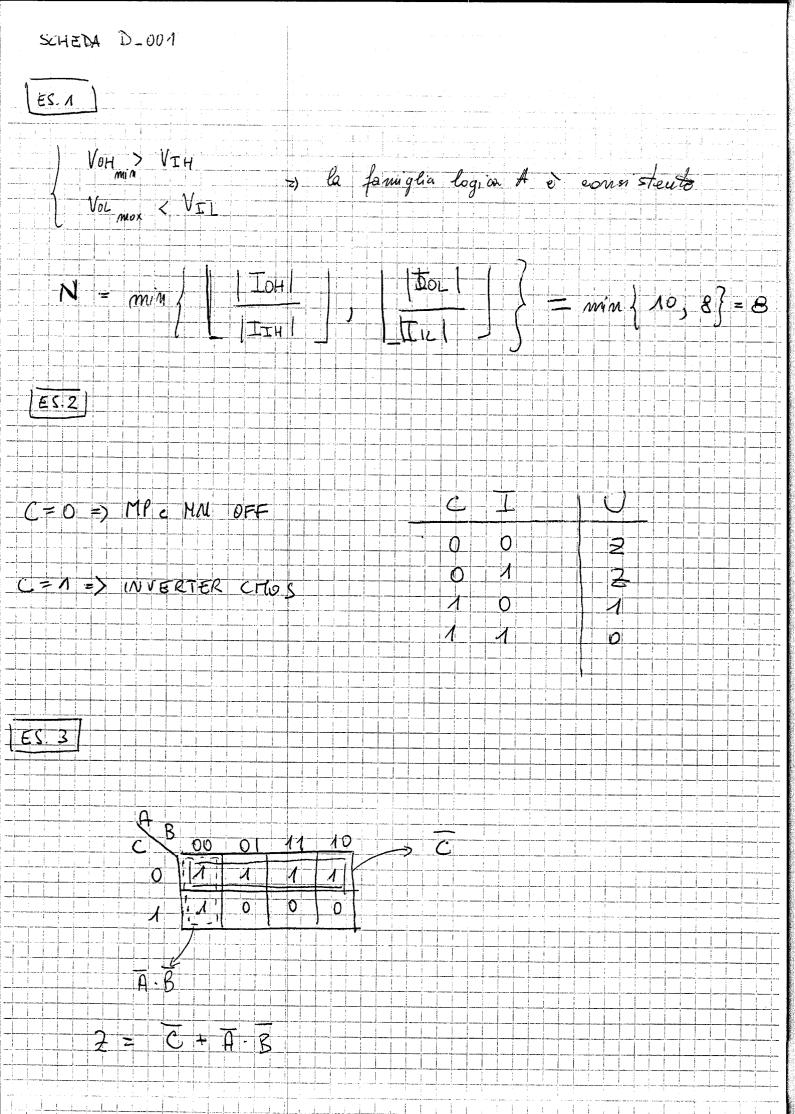

$$Z = \overline{(A+B) \cdot C}$$

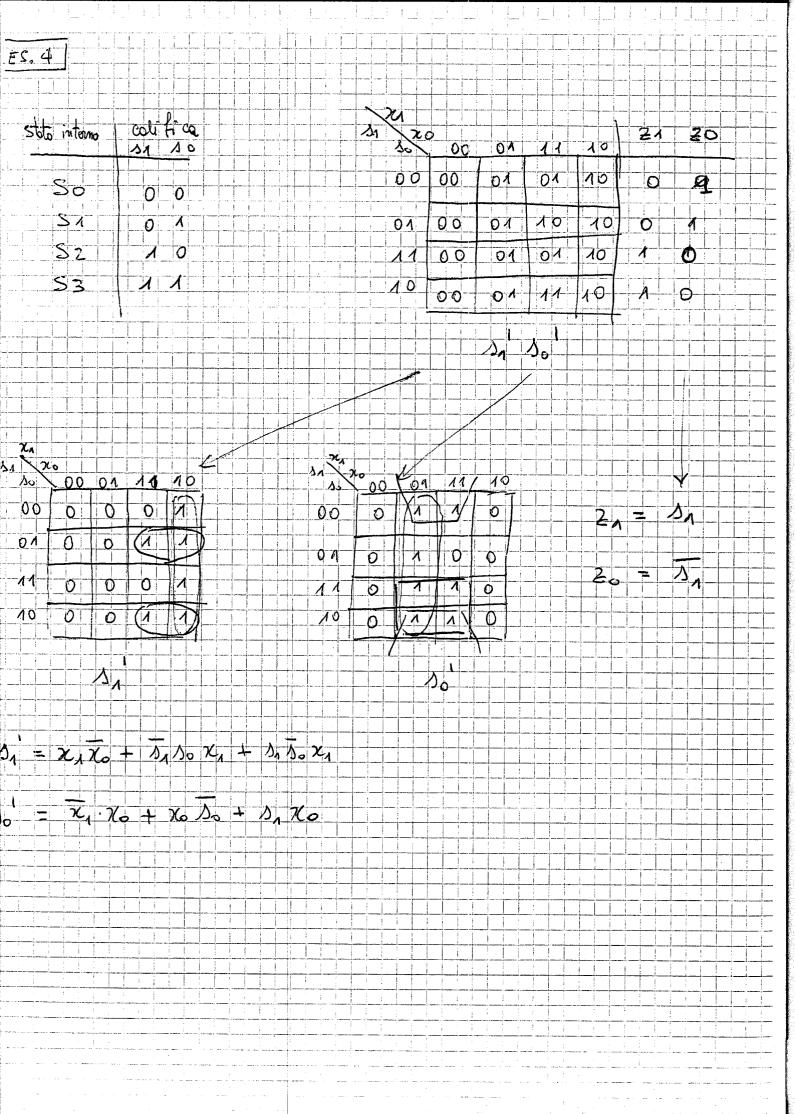
ESERCIZIO N°4

7 punti

Sintetizzare la rete sequenziale sincronizzata di ingressi x_1 e x_0 e uscite z_1 e z_0 descritta dalla seguente tabella di flusso.

$x_1 x$	00	0 1	1 1	1 0	z_1	z_0
S_0	S_0	S_1	S_1	S_2	0	1
S_1	S ₀	S_1	S_2	S_2	0	1
S_2	S ₀	S_1	S_3	S_2	1	0
S_3	S ₀	S_1	S_1	S ₂	1	0




ESERCIZIO N°5

o	nunti
7	Dunii

Scrivere il sottoprogramma sub_es5 per il microcontrollore AT90S8515 che costruisce il vettore C a partire dai vettori A e B. L'elemento i-esimo del vettore C è $c_i = f(a_i, b_{n-i-1})$, i = 0...(n-1), dove n è la dimensione dei vettori. La funzione f è realizzata dal sottoprogramma sub_f, già implementato, che si aspetta gli argomenti della funzione f nei registri R_{16} e R_{17} e restituisce il risultato nel registro R_{18} . Il sottoprogramma sub_es5 dovrà ricevere gli indirizzi base dei vettori A, B e C nei registri X, Y e Z rispettivamente e la dimensione dei vettori nel registro R_0 . Il sottoprogramma non deve alterare i parametri d'ingresso.

rispettivamente e la dimensione de parametri d'ingresso.	i vettori nel registro R ₀ . Il sottoprogramma non deve alterare i
	,

Soluzione esercizio 5/D-001

```
sub_es_5:
       PUSH R0
       PUSH R26
       PUSH R27
       PUSH R28
       PUSH R29
       PUSH R30
       PUSH R31
       ADD YL, R0; metto in Y l'indirizzo della locazione successiva
       BRCC ciclo; a quella che contiene l'ultimo elemento del vettore B
       INC YH
ciclo:
       LD R16, X+
       LD R17, -Y
       RCALL sub_f
       ST Z+, R18
       DEC R0
       BRNE ciclo
       POP R31
       POP R30
       POP R29
       POP R28
       POP R27
       POP R26
       POP R0
       RET
```