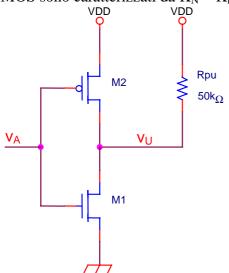

| SCHEDA N°D011     |                               | Data:                                                                                                                            | 3/06/2003 |  |
|-------------------|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-----------|--|
| Nome              |                               | Valutazione                                                                                                                      | ə:        |  |
| Coordinate banco: | NON utilizzare la penna rossa | NON è consentito uscire dall'aula, né consult<br>NON utilizzare la penna rossa.<br>I fogli di brutta devono essere riconsegnati. |           |  |

#### ESERCIZIO Nº1

6 punti

Si considerino le famiglie logiche A e B, i cui parametri elettrici sono riportati nella tabella seguente. Si vogliono collegare N=10 inverter della famiglia logica B in uscita ad un inverter della famiglia logica A. Determinare, se possibile, una configurazione circuitale che permetta tale connessione.




| A                            | В                         |
|------------------------------|---------------------------|
| $V_{OLmax} = 1.5 \text{ V}$  | $V_{IL} = 1 V$            |
| $I_{OLmax} = 10 \text{ mA}$  | $I_{IL} = -1 \text{ mA}$  |
| $V_{OHmin} = 4 V$            | $V_{IH} = 3.5 \text{ V}$  |
| $I_{OHmin} = -20 \text{ mA}$ | $I_{IH} = 0.5 \text{ mA}$ |

#### ESERCIZIO N°2

7 punti

Determinare la corrente nei 2 transistori MOS e la tensione  $v_U$  quando  $v_A = V_{DD}$ . I 2 transistori MOS sono caratterizzati da  $K_N = K_P = 10~\mu\text{A/V}^2$  e  $V_{TN} = |V_{TP}| = 1~V$ . Si assuma  $V_{DD} = 5~V$ .



| $v_{\mathrm{U}}$ | $i_{\mathrm{DSp}}$ | $i_{\mathrm{DSn}}$ |
|------------------|--------------------|--------------------|
|                  |                    |                    |

### ESERCIZIO N°3

| 7 punti                                                                                                     |
|-------------------------------------------------------------------------------------------------------------|
| Sintetizzare come macchina sequenziale sincronizzata di Moore, un contatore modulo cinque con abilitazione. |
|                                                                                                             |

## ESERCIZIO N°4

5 punti

Scrivere il microcodice del sequenziatore realizzato con architettura a ROM di cui è riportato il contenuto nella tabella seguente.

| T   | F   | CF | OP  |
|-----|-----|----|-----|
| 001 | 000 | 1  | 000 |
| 010 | 001 | 0  | 010 |
| 100 | 011 | 1  | 110 |
| 011 | 101 | 0  | 111 |
| 101 | 110 | 0  | 101 |
| 010 | 010 | 1  | 011 |
| 111 | 010 | 0  | 001 |
| 111 | 000 | 0  | 111 |

|  | <br>- |  |
|--|-------|--|
|  |       |  |
|  |       |  |
|  |       |  |
|  |       |  |
|  |       |  |
|  |       |  |
|  |       |  |
|  |       |  |
|  |       |  |
|  |       |  |
|  |       |  |
|  |       |  |
|  |       |  |
|  |       |  |
|  |       |  |
|  |       |  |
|  |       |  |
|  |       |  |
|  |       |  |
|  |       |  |
|  |       |  |
|  |       |  |
|  |       |  |
|  |       |  |
|  |       |  |
|  |       |  |
|  |       |  |
|  |       |  |
|  |       |  |
|  |       |  |
|  |       |  |
|  |       |  |
|  |       |  |
|  |       |  |
|  |       |  |
|  |       |  |

### ESERCIZIO N°5

| 8 punti<br>Scrivere il sottoprogramma <i>commuta_pin</i> per il microcontrollore AT90S8515 che commuta lo stato<br>del pin 0 della porta A, già configurato come uscita, lasciando inalterato lo stato degli altri pin. |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
|                                                                                                                                                                                                                         |  |  |  |  |  |  |
|                                                                                                                                                                                                                         |  |  |  |  |  |  |
|                                                                                                                                                                                                                         |  |  |  |  |  |  |
|                                                                                                                                                                                                                         |  |  |  |  |  |  |
|                                                                                                                                                                                                                         |  |  |  |  |  |  |
|                                                                                                                                                                                                                         |  |  |  |  |  |  |
|                                                                                                                                                                                                                         |  |  |  |  |  |  |
|                                                                                                                                                                                                                         |  |  |  |  |  |  |
|                                                                                                                                                                                                                         |  |  |  |  |  |  |

A A Rep & 100 - 100 - 100 le famigli logi

Verifica cond. per l'interfacciamente:

. cond. sulle leusioui

VOLmax < VIL

1.5 2 AV NO

VIH MIM > VIH

4V > 3.5 V S/

Le famiglie logiche de 8 non somo compatibili; proviamo de l'assisse una resistente d'2. Veolione se il suo dimensionamento è possibile.

- sul livello bosso:

N. RAD | IIL | < VIL ; RAD < VIL = 100 SZ

- sul livello alto

| IOH | > N IIH + VOH MIM ; RPD > VOH MIM = 267 IL

1 l'interfacciamente richierte NON È POSSIBILE.

Es. 2

VGSp = VA - VDD =0; poiché |VGSp | < |VTp | => PMOS è interoletto => [USp =0]

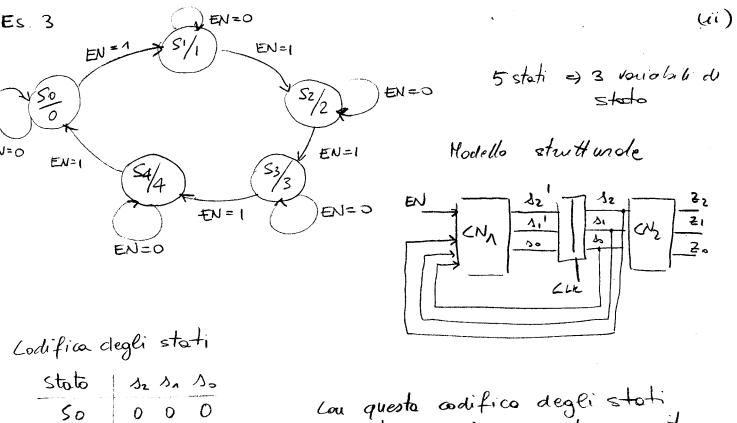
VGSm = VA = 5V; poiché VGSm > VTm => NHOS è in conolizione. Supponiamo che levoni in zona triodo

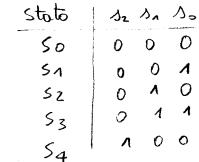
 $Vos_{m} = k_{N} \left[ \left( Vas_{m} - VT_{m} \right) Vos_{m} - \frac{Vos_{m}}{2} \right]$ 

Esseudo prosinteroletto allora l'os n à anche la conente

che scone su Rpu. Quinoli

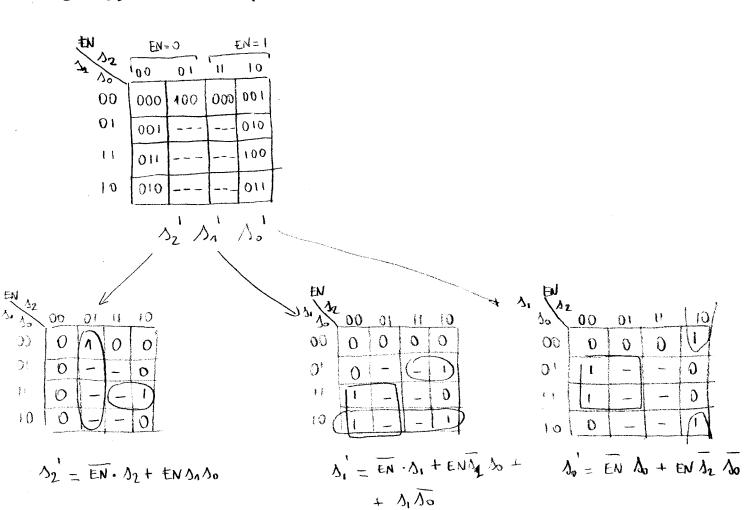
 $\frac{VDD - Vu}{RPU} = KN \left[ \left( VDD - VT_m \right) Vu - \frac{Vu}{2} \right]$ 


 $5 - Vu = 0.5 \left( 4 Vu - \frac{Vu}{2} \right)$ ; Vu - 12 Vu + 20 = 0


 $V_u = 6 \pm \sqrt{36-20} = \frac{2\sqrt{36-20}}{1000}$ 

10 U NOW ACCETABILE

Venifica ip. di funzionamento in zona triordo:


Van = VDD - Vu = 3V > VTn => OK





Lou questa codifico degli stati la rete CN2 è un corto circuito

di CN1: Sintesi



| Micrococlice;                                             | Conolitiona | CF | stoto          | coolfice |
|-----------------------------------------------------------|-------------|----|----------------|----------|
|                                                           | G           | 0  | So             | 000      |
| 50: 0P=000; if H Sielse So.                               | H           | Λ  | Sı             | 001      |
| SI: OP = O10; if G Szelve Sn.                             |             |    | Sz             | 010      |
| SI: OP COTO, IT SI                                        |             |    | S <sub>3</sub> | 011      |
| S2: 0P = 110; if H S4 clse S3.                            |             |    | S4             | 100      |
| if G S3 ene > .                                           |             |    | 55             | 101      |
| V /_ Sh px3                                               |             |    | Se             |          |
|                                                           |             |    | 57             | 119      |
| S4: OP=101; if H S2 else S2. S5: OP=011; if H S2 else S2. |             |    |                | r        |
|                                                           |             |    |                |          |
| S6: OPE 1111; if GS7 else So.                             |             |    |                |          |

## Es.5

# commute-pin:

PUSH RIF
PUSH RI6
IN RI6, PORTÀ
LDI RI7, Ob 0000 0001
EOR RI6, RI7
OUT PORTA, RI6
POP RI6
POP RI7
RET