SCHEDA N°D_04_01			Data:		
Cognome		Posizione		Valutazione	
Nome					
Tempo disponibile: Durante la prova:	1ora NON è consentito uscire dall'aula, né consultare testi esclusi i data sheet NON usare il colore rosso Riconsegnare tutti i fogli ricevuti. I risultati devono essere motivati chiaramente				

ESERCIZIO Nº1

7 punti

Determinare i margini di rumore $MN_{\rm H}$ e $NM_{\rm L}$ per un invertitore RTL. Per l'alimentazione si ha $V_{\rm CC} = 5$ V, per le resistenze di base e di collettore si ha $R_{\rm B} = 12$ k Ω , $R_{\rm C} = 1.8$ k Ω e per il transistore $V_{\rm BE(on)} = 0.7$ V, $V_{\rm BE(sat)} = 0.8$ V, $V_{\rm CE(sat)} = 0.1$ V, $N_{\rm BE} = 150$

ESERCIZIO N°2

6 punti

Realizzare in tecnologia CMOS un circuito digitale a 3 ingressi A, B e C e un'uscita U che implementi la funzione logica U = C'(A' + B')

ESERCIZIO N°3

7 punti

Disegnare il grafo di flusso e progettare la rete sequenziale di Moore che lo implementa, di un sistema sequenziale con un ingresso e una uscita, che viene posta a 1 ogni volta che l'ingresso commuta due volte di seguito. A titolo di esempio viene presentata l'uscita della rete (dopo il clock) per una possibile sequenza di ingresso:

IN 000100100101010100010 OUT XX00100100111111110001

ESERCIZIO N°4

5 punti

Si supponga di avere a disposizione moduli di memoria RAM da $4k \times 2$. Disegnare un loro possibile assemblaggio che realizzi un modulo da $16k \times 6$.

ESERCIZIO N°5

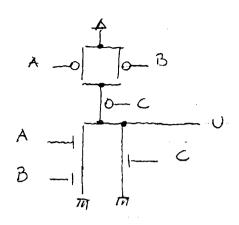
8 punti

Scrivere un programma per il microcontrollore AT90S8515 che, dopo avere correttamente inizializzato le porte, legga continuamente lo stato degli 8 pin della porta A e ponga in uscita sulla porta B un numero binario corrispondente al numero di pin della porta A trovati al valore 1.

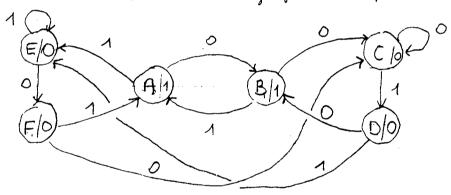
PORTA A (IN)	PORTA B (OUT)			
00101001	00000011			
10111011	00000110			
00000000	00000000			
11111111	00001000			

SCHEDA DO4. 01 ELETTRONICA

Si ricova subito:


$$V_{IL} = 0.7V$$
 $V_{OL} = 0.1V$ (satura)
 $V_{OH} = 5V$ (interdetta)

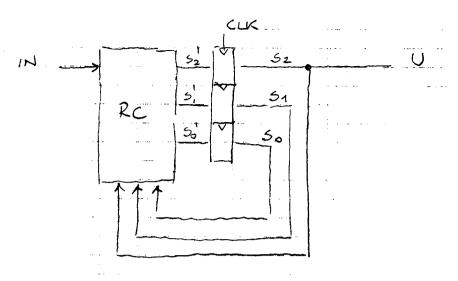
Occorre déterminare VIH. Mi pougo mel pourts évuite tra soturatione e toua attive. Cioè dove si les:


Ricaro

Per volori di ingresso magnori, le I3 crexe, mentre le Ic non può che restore costante. Quindi si confermo che a è soturo

Suriue

3 udividus un possibile groß di fluxo



Occorrono 3 variabili di stato (6 stati): 525,50 Scelgo una codifica degli stati

Tabella di fluss

12	0	11	_ U
Α.	B	E	1
B	C	A	1
C		D	٥
D	B	E	0
E	F	E	Ø
F	_	A	0

Modella per la macchine di Moore la coolifica degli Boti è stata scelta in mools che 5, = U

Simetizzo le rete combinatoria

117	52			
5, 50	00	01	11	10
00	000	×	×	001
01	110	110	011	011
······································	010	×	··-×	011
10	ರಿರು	000	101	101

$$0 \times \times 0$$

$$0 \times \times 0$$

$$0 \times \times 0$$

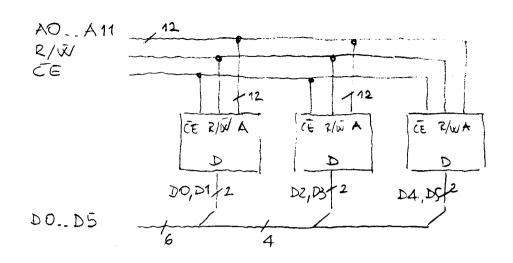
$$0 \times \times 0$$

$$0 \times 0$$

Rete per 51

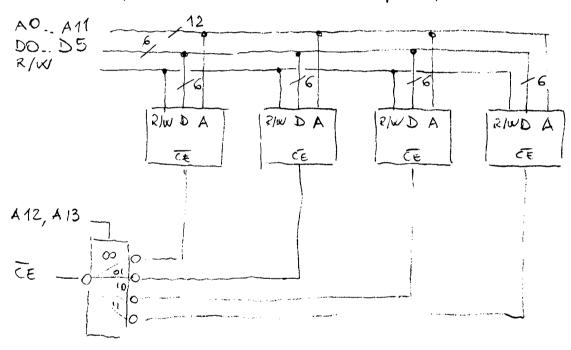
$$0 \times \times 0$$

$$1 + 1 + 1$$


$$1 \times \times 1$$

$$0 = 5_0$$

Rever per 50


$$0 \times \times 1$$
 $0 \times \times 1$
 $0 \times \times 1$
 $0 \times \times 1$
 $0 \times \times 1$

Rollizzo prima un 4k×6 con 3 dip 4k×2

(4)

Assemblo poi 4 moduli 4kx6 per fore il 16kx6

5 progr: CLR R16
OUT DDRA, R16
SER R16
OUT DDRB, R16
OUT PORTA, R16

ciclo: IN RIG, PINA
CLR RIT
LDI R18,8
e1: LSL R16
INC RIT
DEC R18
BRNE e1

OUT PORT B, RIT

RTMP ciceó

; conta e partire del MSB