ESERCIZIO Nº1

8 punti

Scrivere un sottoprogramma per il microcontrollore XMEGA256A3BU che valuti il modulo N del valore a 16 bit contenuto in Y, e lasci il risultato in R18. Cercare di fare in modo che il tempo di esecuzione del sottoprogramma non sia per ogni valore di Y superiore ai 1000 cicli di clock. $N = 33 + |M|_{31}$ ove M è la matricola dello studente.

ESERCIZIO N°2

6 punti

Sintetizzare in forma normale ottima NAND-NAND e disegnare lo schema logico della una rete combinatoria a 5 ingressi (X_4 X_3 X_2 X_1 X_0) individuata dai valori di uscita, corrispondenti alla sequenza ordinata degli ingressi, pari al valore corrispondente delle prime (a partire dalla meno significativa) 16 cifre binarie di (98765 + M) seguite dalle stesse cifre in ordine inverso. Evidenziare gli implicanti essenziali (motivando sinteticamente l'indicazione).

ESERCIZIO N°3

6 punti

Progettare una rete sequenziale sincrona secondo il modello di Moore con un ingresso e una uscita in grado di generare una forma d'onda di periodo P (in cicli di clock) con un numero K di valori a 1 se l'ingresso è 0 e L se l'ingresso è 1. La disposizione dei valori nel periodo è a scelta dello studente.

$$P = 5 + |M|_3$$

 $K = 1 + |3 + M|_{P-1}$
 $L = |K|_{P-1} + 1$

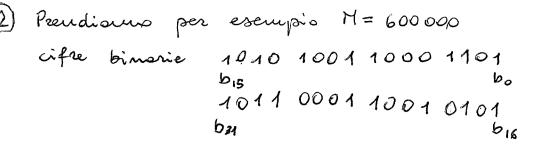
ESERCIZIO Nº4

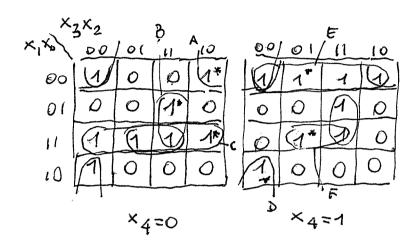
6 punti

Disegnare lo schema logico di un contatore $\overline{\text{UP}}/\text{DOWN}$ modulo N con abilitazione E, ove $N = (9 + |5M|_7)$.

ESERCIZIO N°5

7 punti

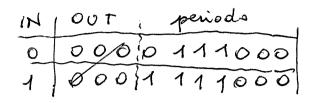

Si ha un invertitore CMOS caricato con un resistore dall'uscita verso V_{DD} . Con tensione di ingresso pari a V_1 , si misura una corrente erogata dall'alimentatore pari a 4 mA.


Determinare se la misura è ragionevole e in tal caso trovare il valore di R con almeno 4 cifre significative.

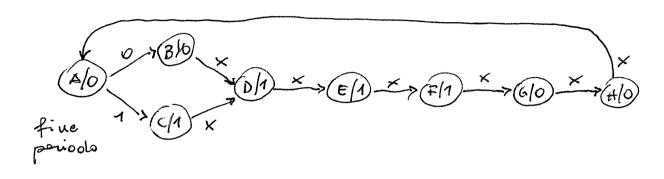
$$V_{DD} = 5 \text{ V}$$
; $k_n = -k_p = 2 \text{ mA/V}^2$, $V_{Tn} = -V_{Tp} = 1 \text{ V}$.

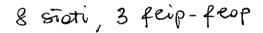
$$V_1 = 3.5 + (M - 600000)10^{-6} \text{ V}$$

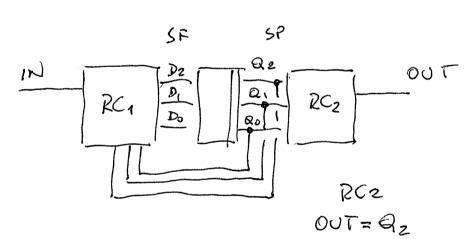
```
N é compress tra 33 e 63; ridriede 6 bit
MODN: PUSH PIG
       FUSH RZ4
       7054 R25
     TUSH YL
     PUSH YH
     LD1 R24 eow (4*N)
LD1 R25, bigh (4*N)
     LDI RIG, 10
loop: CP YL, 224
     CPC YH, R25
     BRCS oftre
     SUB YL, R24 ; togete un multiple oli N
     5BC YH, R25
     LSR R25
     ROR R24 7 divide per 2 (4*N*256)
     DEC RIG
     BRNE COOP
     MOV RIB, YL ; carica il risultato
     POP YH
     POP YL
     POP R25
     POP R24
     POP RIG
     RET
```

6 implicanti essent. coprous TOTTA la functione


 $U = \overline{\widetilde{x}_2 \overline{x}_1 \overline{x}_0} \cdot \overline{x_3 \overline{x}_2 \overline{x}_0} \cdot \overline{\widetilde{x}_4 \overline{x}_1 \overline{x}_0} \cdot \overline{\widetilde{x}_3 \overline{x}_2 \overline{x}_0} \cdot \overline{x_4 \overline{x}_1 \overline{x}_0} \cdot \overline{x_2 \overline{x}_1 \overline{x}_0}$


3) Assumiano um H tole che P=7 K=3 L=4


10 periodo del generatore combia dopo over concluso
il periodo precedente

in questo modo 6/7 degli sisti coi ucidono tra le due seq-

Colific				
	R	20,	Q_{o}	
À		0	0	
\mathcal{B}	0	0	1	
C	1	0	0	
D	1	0	1	
E	1	1	0	
F	1	1	1	
6	Ó	1	1	
+	0	1	0	

Q_{i}	Q_o			
Q2 IN	00	01	11	10
00	001	104	010	000
91	100	101	010	000
11	101	110	011	111
10	101	-	011	

Siuteoi

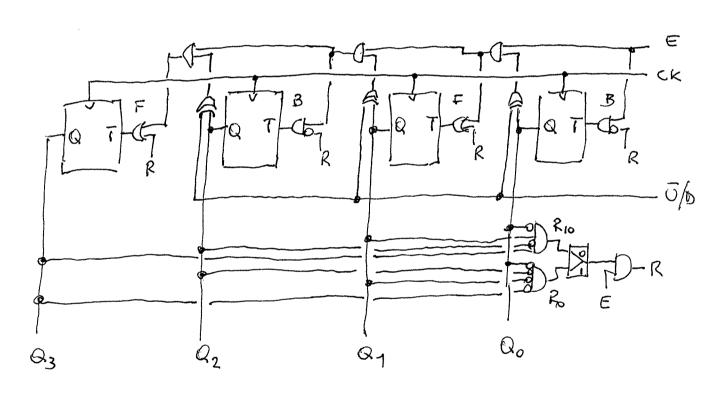
RC1

D2 = Q	100+Q11N+Q2Q0
000	
[11000]	
1940	

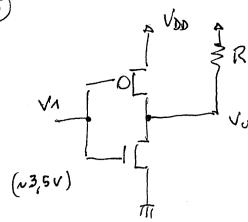
D1 = Q1Q0+Q2Q0+Q2Q1

$$D_0 = \overline{Q}_2 \overline{Q}_1 Q_0 + \overline{Q}_1 \overline{Q}_2 \overline{N} + Q_2 \overline{Q}_0 + Q_2 \overline{Q}_1$$

	1
9	FBBB
NO	F83-
11	FBFB
12	FB
13	FF BB
14	FFB-
15	FFFB
- 1	


Configuratione

per tutti i casi


possibili, volide

sia per UP sia

per DOWN

$$J_{DD} = 4mA$$
 $V_{DD} = 5V$
 $K_{M} = -K_{p} = 2mA/V^{2}$
 $V_{4} = 3.5V$ (de colcolore con a cifre sign)

la mex IDD si ha con nettos saturo

$$I_{DD} = \frac{K_M}{2} V_0 \left(V_1 + V_4 - V_0 - 2V_{TM} \right) \quad da \quad cui \quad V_0$$

$$4 = \times (2 \vee_1 - \times -2)$$

$$x^{2} - 2 \times (V_{1} - 1) + 4 = \emptyset$$

$$\times = (V_1 - 1) - \sqrt{(V_1 - 1)^2 - 4}$$

e'altro soluz- mon e eccetabile, è troppo alta per a up force

· Teovata Vu, si trova IR

e infine
$$R = \frac{VDD - VU}{IR}$$