

8-bit
Microcontrollers

Application Note

Rev. 8050A-AVR-02/08

AVR1313: Using the XMEGA IO Pins and
External Interrupts

Features
• Flexible pin configuration
• Synchronous and/or asynchronous input sensing
• Asynchronous wake-up signaling
• Configurable output driver – and pull settings:

 Totem-pole
 Wired-AND
 Wired-OR
 Pull-up/-down
 Bus keeper
 Inverted I/O

• Slew rate control
• Configuration of multiple pins in a single operation
• Virtual set/clear/toggle registers for output and direction registers
• Mapping of ports into virtual ports in I/O space for faster access

1 Introduction
This application note gives an introduction to the usage of the highly configurable
XMEGA™ I/O pins and external interrupts.

2 AVR1313
8050A-AVR-02/08

2 Module Overview
This chapter gives an overview of the I/O port module and describes the various
configuration options available.

2.1 Naming
I/O pins on the XMEGA are grouped into I/O ports of 8 pins. The I/O ports are named
PORTx, where x is a letter, e.g. PORTA, PORTB etc. The individual pins within a port
are named Pxn, where x is the port letter and n identifies the pin number, e.g. PA0,
PA1 etc.

Some registers affect all pins in a port. In these registers, bit n corresponds to pin n.
In other words, the least significant bit corresponds to pin 0, while the most significant
bit corresponds to pin 7.

2.2 Basic Configuration and Usage
This section describes the configuration options and registers needed to use the
basic functionality of the I/O port pins.

2.2.1 Setting the Direction of Port Pins

The direction of port pins is controlled through the DIR register. A port pin n is
configured as output if the DIRn bit in the DIR register is ‘1’. If the DIRn bit is ‘0’, the
port pin is configured as an input.

The DIR register can be accessed directly, or manipulated through the strobe
registers DIRSET, DIRCLR and DIRTGL. Writing a bit mask to DIRSET will cause
that bit mask to be set in the DIR register. Writing a bit mask to DIRCLR will cause
that bit mask to be cleared in the DIR register. Writing a bit mask to DIRTGL will
cause the bits in the mask to be toggled in the DIR register.

2.2.2 Controlling the Output Value of Port Pins

The output value of a port pin is controlled through the OUT register. The direction of
the port pin must be set to output for the corresponding OUT register bit to have any
effect. Port pin n will be driven high when the OUTn register is ‘1’. When OUTn is ‘0’,
port pin n will be driven low. This assumes that the output configuration has not been
changed and that the pin inversion bit has not been set.

The OUT register can either be accessed directly, or manipulated through the strobe
registers OUTSET, OUTCLR and OUTTGL. Writing a bit mask to OUTSET will cause
that bit mask to be set in the OUT register. Writing a bit mask to OUTCLR will cause
that bit mask to be cleared in the OUT register. Writing a bit mask to OUTTGL will
cause the bits in the mask to be toggled in the OUT register.

2.2.3 Reading the Logic State of Port Pins

The logic state of a port can be obtained by reading the IN registers. The current logic
state of port pin n can be read through the INn bit, Regardless of direction setting.

 AVR1313

 3

8050A-AVR-02/08

2.3 Pin Configuration
Each IO pin has its own configuration register named PINnCTRL, where n signifies
the pin number. Through these registers a number of parameters can be configured
on a pin-by-pin basis. These parameters are explained in this section.

2.3.1 Ouput/Pull Configuration

The output/pull configuration bits are used to configure the output driver behavior and
the pull configuration. Table 2-1 shows a parametric overview of the possible
configurations.

Table 2-1. Output/pull configurations
Symbol Output Configuration Pull Configuration

PORT_OPC_TOTEM_gc Totempole (N/A)

PORT_OPC_BUSKEEPER_gc Totempole Bus keeper on input and
output

PORT_OPC_PULLDOWN_gc Totempole Pull-down on input

PORT_OPC_PULLUP_gc Totempole Pull-up on input

PORT_OPC_WIREDOR_gc Wired-OR (N/A)

PORT_OPC_WIREDAND_gc Wired-AND (N/A)

PORT_OPC_WIREDORPULL_gc Wired-OR Pull-down

PORT_OPC_WIREDANDPULL_gc Wired-AND Pull-up

Output configurations:
• In the “Totempole” configuration, the output is driven hard to either VCC or GND

as commanded by the corresponding bit in the OUT register.
• In the “Wired-OR” configuration, writing a ‘1’ to OUTn causes pin n to be driven

hard to VCC. Writing ‘0’ to OUTn releases the pin, allowing the pin to be pulled to
GND with an internal or external pull-down resistor.

• In the “Wired-AND” configuration, writing a ‘0’ to OUTn causes pin n to be driven
hard to GND. Writing ‘1’ to OUTn releases the pin, allowing the pin to be pulled to
VCC with an internal or external pull-up resistor.

Pull configurations:
• The “Buskeeper on input and output” configuration provides a weak bus keeper

that will keep the pin at the same logic level when the pin is not driven to any logic
state.

• The “Pull-down” configuration enables the internal pull-down resistor for the pin.
• The “Pull-up” configuration enables the internal pull-up resistor for the pin.

2.3.2 Input/Sense Configuration

The input/sense configuration bits controls the input sensing and digital input buffer of
the I/O pin. The possible input/sense configurations are listed in Table 2-2.

Four sense configurations are available. These affect how interrupts and events are
generated from the pin. The pin can sense on both edges, rising edge, falling edge or
low level. Note that sensing on high level can be achieved by setting the “Inverted
I/O” bit in the PINnCTRL register. If the pin is used to generate events, and the sense

4 AVR1313
8050A-AVR-02/08

setting is set to low level, the pin is transparent to the event system, meaning that the
level on the pin will be directly connected to the event line.

Setting the input/sense field to “Digital input buffer disabled” disables the digital input
buffer on the pin. This can be used to reduce power consumption when the pin is
unused, or used only for analog functions. The corresponding bit in the IN register will
always read ‘0’ when the digital input buffer is disabled.

Table 2-2. Input/sense configuration
Symbol Configuration

PORT_ISC_BOTHEDGES_gc Sense both edges

PORT_ISC_RISING_gc Sense rising edge

PORT_ISC_FALLING_gc Sense falling edge

PORT_ISC_LEVEL_gc Sense low level (transparent for events)

PORT_ISC_INPUT_DISABLE_gc Digital input buffer disabled

2.3.3 Inversion

The “Inverted I/O” bit in the PINnCTRL registers control the polarity of the pin. If this
bit is written to zero, all input and output logic is inverted with respect to the
descriptions in this application note.

Setting the “Inverted I/O” bit for a pin will invert the input/output signal for any
peripheral module overriding the pin. As an example, it is possible to invert a PWM
output signal from a timer/counter module simply by setting the “Inverted I/O” bit. This
can be useful for easy switching between active high and active low driving.

2.3.4 Slew-Rate Control

Writing a ‘1’ to the “Slew-rate control” bit in the PINnCTRL register enables slew-rate
limiting for that I/O pin. This can be used to reduce EMC issues caused by switching
of logic levels on the port pins. For information about the characteristics of the slew-
rate limiter, please refer to the device data sheet.

2.4 Configuring and Using Port Interrupts
I/O port interrupts can be used to generate interrupt on pin change or pin level, and
for waking the device from sleep modes. This section gives an overview of the I/O
port interrupt system and how it is used.

2.4.1 Configuration of Port Interrupts

Each I/O port on the XMEGA has two interrupts. It is possible to map each interrupt to
be triggered by an arbitrary combination of the pins in the I/O port.

Setting up the pin interrupts is done in 3 steps, in this example interrupt 0:

1. Configure the input/sense part of the PINnCTRL register for each pin that can
trigger the interrupt.

2. Write the bit mask corresponding to the pins that can trigger the interrupt to the
INT0MASK register.

3. Select the interrupt priority level by setting the INT0LVL part of the INTLVL register.
Note that the selected interrupt level must be enabled in the Programmable Multi-
level Interrupt Controller (PMIC) and the global interrupt enable flag must be set for

 AVR1313

 5

8050A-AVR-02/08

the interrupt handler to be executed. See application note AVR1305 for more
information on interrupts on the XMEGA.

2.4.2 Asynchronous Sense

There are two levels of asynchronous support on the XMEGA. Pin 2 on every port
has full asynchronous support, while the other pins have limited asynchronous
support. A summary of the full and limited asynchronous sense modes is listed in
Table 2-3 and Table 2-4.
Table 2-3. Full asynchronous sense support. (Pin 2)
Sense setting Supported Interrupt After Wake-up

Rising edge Yes Always

Falling edge Yes Always

Both edges Yes Always

Low level Yes Pin level must be kept unchanged

Table 2-4. Limited asynchronous sense support. (All port pins except pin 2)
Sense setting Supported Interrupt After Wake-up

Rising edge No -

Falling edge No -

Both edges Yes Pin value must be kept unchanged

Low level Yes Pin level must be kept unchanged

2.4.3 Using Port Interrupts to Wake up From Sleep Modes

Any port pin can be used to wake up the XMEGA from sleep modes. However, the
asynchronous sense support level on the pin used for wake-up determines which
sense settings can be used and the state of interrupt-flags after wake-up.

Table 2-3 and Table 2-4 shows the supported asynchronous sense settings for limited
and full asynchronous sense pins. The pin used for wake-up must be configured to
sense on one of the settings that are supported by the asynchronous sense to be
able to wake up the device.

Table 2-3 and Table 2-4 also shows the conditions that must be met for the interrupt
flag to be set after a device wake-up.

2.5 Using I/O Ports Efficiently
Two features are available on the XMEGA series that can reduce code size and
increase execution speed: multi-pin configuration and virtual ports.

2.5.1 Multi-pin Configuration

Having one configuration register for each port pin increases the flexibility, but
configuring every pin, one at a time can require a lot of code. Several pins in one IO
port might need the same configuration. The process of configuring several pins in
one IO port to the same configuration is simplified through a multi-pin configuration
process. First, a bit pattern matching the pins to be configured is written to the
PINMASK register in the PORTCFG module. When a pin configuration is written to

6 AVR1313
8050A-AVR-02/08

one of the PINnCTRL registers of that port, that value is written to all the PINnCTRL
registers of the pins matching the bit pattern in the PINMASK register. It is not
necessary to write to one of the registers that are targeted by the PINMASK register.
If the register that is written to is not targeted by the bit mask in PINMASK, it remains
unchanged.

Note that it is important that the multi-pin configuration is not interrupted by a task that
writes to a PINnCTRL register. If the PINMASK register is already written, an interrupt
is executed, and the interrupt service routine (ISR) writes to any PINnCTRL register,
pins belonging to a different I/O port than intended will be configured. The
recommended solution is to store and then disable the global interrupt flag before
doing a multi-pin configuration and restore the global interrupt flag after the
configuration has been written.

See chapter 3 for an example on how to use the multi-pin configuration.

2.5.2 Virtual Ports

Some instructions in the AVR® instruction set can only operate on addresses that are
within the AVR I/O space. Using these instructions instead of their data space
equivalents is both faster and consumes less program memory. All I/O port registers
on the XMEGA have addresses outside the I/O space.

The solution to this is to use the virtual ports. Up to four of the I/O ports can be
mapped into virtual ports that have registers in the I/O space. The virtual ports make
the DIR, OUT, IN and INTFLAGS registers of the desired I/O port available in I/O
space. The other, less used I/O port registers are still available through the regular
port module registers.

2.5.3 Differences Between I/O Space and Data Space Instructions

The execution time and code size of the special I/O space instructions along with
related data space instructions are shown in Table 2-5.

Table 2-5. Execution Time and Code Size for I/O Space and Data Space Instructions
Instruction Clock cycles Size (words) Comment

IN 1 1 Only I/O space

OUT 1 1 Only I/O space

CBI 1 1 Only I/O space address < 32

SBI 1 1 Only I/O space address < 32

SBIC 2/3/4 1 Only I/O space address < 32.

SBIS 2/3/4 1 Only I/O space address < 32

LD / LD+ 1 (IO) / 2 (RAM) 1 Pointer must be initialized

LD - / LDD 2 (IO) / 3 (RAM) 1 Pointer must be initialized

LDS 2 (IO) / 3 (RAM) 2

ST / ST + 1 1 Pointer must be initialized

ST - / STD 2 1 Pointer must be initialized

STS 2 2

Note that data instructions operating in data space can be used on registers with I/O
space addresses, since the I/O space is also mapped into the data space.

 AVR1313

 7

8050A-AVR-02/08

The differences in execution time and code size might not seem that large, but in a
real-life example the differences can be huge. To illustrate, consider setting the PC0
pin high without changing the state of the other pins. The following two examples
show the assembly code needed to perform this task when PORTC is mapped to
PVIRT0 compared to accessing PORTC directly in data space.

Using PVIRT0 (I/O space):
sbi PVIRT0_OUT, 0

The size of this code is 1 word and execution time is 1 clock cycle.

Using PORTC directly (Data space):
sbr r16, 0x01

sts PORTC_base + PORT_OUTSET_offset, r16

The size of this code is 3 words and execution time is 3 clock cycles.

The above example shows that it is possible to save a significant amount of clock
cycles and program memory by mapping a port to a virtual port. It is recommended to
use virtual port mapping when timing requirements are tight and when the port
registers are accessed frequently in the application.

Note that even though the CPU completes the “sbi” instruction in one clock cycle, it
takes two clock cycles before the effect can be seen on the I/O port.

3 Getting Started
This section walks you through the basic steps for getting up and running with the
XMEGA I/O pins and port interrupts.

3.1 Basic Digital I/O
Task: Set up PORTC to read input from 8 switches and output the pin state to 8 LEDs
connected to PORTD.

1. Configure all 8 pins on PORTD to output by setting the PORTD.DIR register to
0xFF.

2. Read state of PORTC from the PORTC.IN register.
3. Store the value from step 1 to PORTD.OUT.
4. Repeat from step 1.

3.2 Configuring Several Pins in one Operation
Task: Set up pins 0-3 on PORTC for Wired-AND with pull-up operation.

1. Write 0x0f to PORTCFG.PINMASK to select that pins 0-3 are going to be
configured.

2. Write PORT_OPC_WIREDANDPULL_gc to PORTC.PIN0CFG to trigger a write to
the PINnCFG registers for pin0-3 on PORTC.

3.3 Mapping Real Ports to Virtual Ports
Task: Map PORTC to Virtual port 0 and PORTD to Virtual port 1 and perform the
same task as in section 3.1 using the virtual ports.

8 AVR1313
8050A-AVR-02/08

1. Write PORTCFG_VIRTMAP0_PORTC_gc to PORTCFG.VMAP0 to map PORTC
to PVIRT0.

2. Write PORTCFG_VIRTMAP0_PORTD_gc to PORTCFG.VMAP1 to map PORTD
to PVIRT1.

3. Configure all 8 pins on PORTC to output by setting the PVIRT0.DIR register to 0xff.
4. Read state of PORTC from the PVIRT0.IN register.
5. Store the value from step 4 to PVIRT1.OUT.
6. Repeat from step 4.

3.4 Configuring an I/O Pin for Interrupt Generation
Task: Set up PORTC interrupt 0 as a medium level interrupt, triggered by the rising
edge of PC0. Use the interrupt service routine to toggle the output on PORTD.

1. Configure input/sense on pin0 to rising edge.
2. Write 0x01 to PORTC.INT0MASK to select PC0 as source for interrupt 0.
3. Set IN0LVL part of PORTC.INTCTRL to PORT_INT0LVL_MED_gc to enable

interrupt 0 at medium level.
4. Enable medium level interrupts in the PMIC.
5. Enable the global interrupt flag.

4 Driver Implementation
The included driver has functions that control all the major features of the I/O port
modules. Most functions take a pointer to an I/O port module as its first argument, so
the same functions can be reused for all port modules on one XMEGA.

The driver is written in ANSI® C, and should compile on all compilers with XMEGA
support. Note that this driver is not written with high performance in mind. It is
designed as a library to get started with the XMEGA I/O ports and an easy-to-use
framework for rapid prototyping. For time and code space critical application
development, consider replacing function calls with macros or direct access to
registers.

4.1 Files
The driver package consists of the following files:

• port_driver.c – I/O port driver source file.

• port_driver.h – I/O port driver header file.

• port_example.c – Examples using the I/O port driver.

4.2 Doxygen Documentation
All source code is prepared for automatic documentation generation using Doxygen.
Doxygen is a tool for generating documentation from source code by analyzing the
source code and using special keywords. For more details about Doxygen please visit
http://www.doxygen.org. Precompiled Doxygen documentation is also supplied with
the source code accompanying this application note, available from the readme.html
file in the source code folder.

http://www.doxygen.org/

Disclaimer
Headquarters International

Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

 Atmel Asia
Room 1219
Chinachem Golden Plaza
77 Mody Road Tsimshatsui
East Kowloon
Hong Kong
Tel: (852) 2721-9778
Fax: (852) 2722-1369

Product Contact

Atmel Europe
Le Krebs
8, Rue Jean-Pierre Timbaud
BP 309
78054 Saint-Quentin-en-
Yvelines Cedex
France
Tel: (33) 1-30-60-70-00
Fax: (33) 1-30-60-71-11

Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

 Web Site
www.atmel.com

Technical Support
avr@atmel.com

Sales Contact
www.atmel.com/contacts

 Literature Request
www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND
CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS,
BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the
contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any
commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in,
automotive applications. Atmel’s products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© 2008 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof, AVR® and others, are the registered trademarks or
trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

8050A-AVR-02/08

	1 Introduction
	2 Module Overview
	2.1 Naming
	2.2 Basic Configuration and Usage
	2.2.1 Setting the Direction of Port Pins
	2.2.2 Controlling the Output Value of Port Pins
	2.2.3 Reading the Logic State of Port Pins

	2.3 Pin Configuration
	2.3.1 Ouput/Pull Configuration
	2.3.2 Input/Sense Configuration
	2.3.3 Inversion
	2.3.4 Slew-Rate Control

	2.4 Configuring and Using Port Interrupts
	2.4.1 Configuration of Port Interrupts
	2.4.2 Asynchronous Sense
	2.4.3 Using Port Interrupts to Wake up From Sleep Modes

	2.5 Using I/O Ports Efficiently
	2.5.1 Multi-pin Configuration
	2.5.2 Virtual Ports
	2.5.3 Differences Between I/O Space and Data Space Instructions

	3 Getting Started
	3.1 Basic Digital I/O
	3.2 Configuring Several Pins in one Operation
	3.3 Mapping Real Ports to Virtual Ports
	3.4 Configuring an I/O Pin for Interrupt Generation

	4 Driver Implementation
	4.1 Files
	4.2 Doxygen Documentation

