
8331B- AVR-03/12

8-bit Atmel
XMEGA AU
Microcontroller

XMEGA AU
MANUAL
This document contains complete and detailed description of all modules included in
the Atmel®AVR®XMEGA®AU microcontroller family. The Atmel AVR XMEGA AU is a
family of low-power, high-performance, and peripheral-rich CMOS 8/16-bit microcon-
trollers based on the AVR enhanced RISC architecture. The available Atmel AVR
XMEGA AU modules described in this manual are:

• Atmel AVR CPU
• Memories
• DMAC - Direct memory access controller
• Event system
• System clock and clock options
• Power management and sleep modes
• System control and reset
• Battery backup system
• WDT - Watchdog timer
• Interrupts and programmable multilevel interrupt controller
• PORT - I/O ports
• TC - 16-bit timer/counters
• AWeX - Advanced waveform extension
• Hi-Res - High resolution extension
• RTC - Real-time counter
• RTC32 - 32-bit real-time counter
• USB - Universial serial bus interface
• TWI - Two-wire serial interface
• SPI - Serial peripheral interface
• USART - Universal synchronous and asynchronous serial receiver and transmitter
• IRCOM - Infrared communication module
• AES and DES cryptographic engine
• CRC - Cyclic redundancy check
• EBI - External bus interface
• ADC - Analog-to-digital converter
• DAC - Digital-to-analog converter
• AC - Analog comparator
• IEEE 1149.1 JTAG interface
• PDI - Program and debug interface
• Memory programming
• Peripheral address map
• Register summary
• Interrupt vector summary
• Instruction set summary

Atmel AVR XMEGA AU
1. About the Manual
This document contains in-depth documentation of all peripherals and modules available for the
Atmel AVR XMEGA AU microcontroller family. All features are documented on a functional level
and described in a general sense. All peripherals and modules described in this manual may not
be present in all Atmel AVR XMEGA AU devices.

For all device-specific information such as characterization data, memory sizes, modules,
peripherals available and their absolute memory addresses, refer to the device datasheets.
When several instances of a peripheral exists in one device, each instance will have a unique
name. For example each port module (PORT) have unique name, such as PORTA, PORTB,etc.
Register and bit names are unique within one module instance.

For more details on applied use and code examples for peripherals and modules, refer to the
Atmel AVR XMEGA specific application notes available from http://www.atmel.com/avr.

1.1 Reading the Manual
The main sections describe the various modules and peripherals. Each section contains a short
feature list and overview describing the module. The remaining section describes the features
and functions in more detail.

The register description sections list all registers and describe each register, bit and flag with
their function. This includes details on how to set up and enable various features in the module.
When multiple bits are needed for a configuration setting, these are grouped together in a bit
group. The possible bit group configurations are listed for all bit groups together with their asso-
ciated Group Configuration and a short description. The Group Configuration refers to the
defined configuration name used in the Atmel AVR XMEGA assembler header files and applica-
tion note source code.

The register summary sections list the internal register map for each module type.

The interrupt vector summary sections list the interrupt vectors and offset address for each mod-
ule type.

1.2 Resources
A comprehensive set of development tools, application notes, and datasheets are available for
download from http://www.atmel.com/avr.

1.3 Recommended Reading
• Atmel AVR XMEGA AU device datasheets
• XMEGA application notes

This manual contains general modules and peripheral descriptions. The AVR XMEGA AU device
datasheets contains the device-specific information. The XMEGA application notes and AVR
Software Framework contain example code and show applied use of the modules and peripher-
als.

For new users, it is recommended to read the AVR1000 - Getting Started Writing C Code for
Atmel XMEGA, and AVR1900 - Getting Started with Atmel ATxmega128A1 application notes.
2
8331B–AVR–03/12

Atmel AVR XMEGA AU
2. Overview
The AVR XMEGA AU microcontrollers is a family of low-power, high-performance, and periph-
eral-rich CMOS 8/16-bit microcontrollers based on the AVR enhanced RISC architecture. By
executing powerful instructions in a single clock cycle, the Atmel AVR XMEGA AU devices
achieve throughputs approaching one million instructions per second (MIPS) per megahertz,
allowing the system designer to optimize power consumption versus processing speed.

The AVR CPU combines a rich instruction set with 32 general purpose working registers. All 32
registers are directly connected to the arithmetic logic unit (ALU), allowing two independent reg-
isters to be accessed in a single instruction, executed in one clock cycle. The resulting
architecture is more code efficient while achieving throughputs many times faster than conven-
tional single-accumulator or CISC based microcontrollers.

The Atmel AVR XMEGA AU devices provide the following features: in-system programmable
flash with read-while-write capabilities; internal EEPROM and SRAM; four-channel DMA control-
ler; eight-channel event system and programmable multilevel interrupt controller; up to 78
general purpose I/O lines; 16- or 32-bit real-time counter (RTC); up to eight flexible, 16-bit
timer/counters with capture, compare and PWM modes; up to eight USARTs; up to four I2C and
SMBUS compatible two-wire serial interfaces (TWIs); one full-speed USB 2.0 interface; up to
four serial peripheral interfaces (SPIs); CRC module; AES and DES cryptographic engine; up to
two 16-channel, 12-bit ADCs with programmable gain; up to two 2-channel, 12-bit DACs; up to
four analog comparators with window mode; programmable watchdog timer with separate inter-
nal oscillator; accurate internal oscillators with PLL and prescaler; and programmable brown-out
detection.

The program and debug interface (PDI), a fast, two-pin interface for programming and debug-
ging, is available. Selected devices also have an IEEE std. 1149.1 compliant JTAG interface,
and this can also be used for on-chip debug and programming.

The Atmel AVR XMEGA devices have five software selectable power saving modes. The idle
mode stops the CPU while allowing the SRAM, DMA controller, event system, interrupt control-
ler, and all peripherals to continue functioning. The power-down mode saves the SRAM and
register contents, but stops the oscillators, disabling all other functions until the next TWI, USB
resume, or pin-change interrupt, or reset. In power-save mode, the asynchronous real-time
counter continues to run, allowing the application to maintain a timer base while the rest of the
device is sleeping. In standby mode, the external crystal oscillator keeps running while the rest
of the device is sleeping. This allows very fast startup from the external crystal, combined with
low power consumption. In extended standby mode, both the main oscillator and the asynchro-
nous timer continue to run. To further reduce power consumption, the peripheral clock to each
individual peripheral can optionally be stopped in active mode and idle sleep mode.

The devices are manufactured using Atmel high-density, nonvolatile memory technology. The
program flash memory can be reprogrammed in-system through the PDI or JTAG interfaces. A
boot loader running in the device can use any interface to download the application program to
the flash memory. The boot loader software in the boot flash section will continue to run while
the application flash section is updated, providing true read-while-write operation. By combining
an 8/16-bit RISC CPU with In-system, self-programmable flash, the Atmel AVR XMEGA is a
powerful microcontroller family that provides a highly flexible and cost effective solution for many
embedded applications.
3
8331B–AVR–03/12

Atmel AVR XMEGA AU
The Atmel AVR XMEGA AU devices are supported with a full suite of program and system
development tools, including C compilers, macro assemblers, program debugger/simulators,
programmers, and evaluation kits.Block Diagram

Figure 2-1. Atmel AVR XMEGA AU block diagram.

VBAT
Power

Supervision

Battery Backup
Controller

Real Time
Counter

32.768 kHz
XOSC

Power
Supervision
POR/BOD &

RESETPORT A (8)

PORT B (8)

EVENT ROUTING NETWORK

DMA
Controller

BUS
Matrix

SRAM

EBI

ADCA

DACA

ACA

DACB

ADCB

ACB

OCD

PORT K (8)

PORT J (8)

PORT H (8)

PDI

Watchdog
Timer

Watchdog
Oscillator

Interrupt
Controller

DATA BUS

Prog/Debug
Controller

PO
R

T
R

 (2
)

Oscillator
Circuits/

Clock
Generation

Oscillator
Control

Real Time
Counter

Event System
Controller

JTAG

Sleep
Controller

DES

CRC

IR
C

O
M

PORT G (8)

PORT L (8)

PO
R

T
Q

 (8
)

PORT M (8)

PORT C (8)

TC
C

0:
1

U
SA

R
TC

0:
1

TW
IC

SP
IC

PORT D (8)

TC
D

0:
1

U
SA

R
TD

0:
1

TW
ID

SP
ID

TC
F0

:1

U
SA

R
TF

0:
1

TW
IF

SP
IF

TC
E0

:1

U
SA

R
TE

0:
1

TW
IE

SP
IE

PORT E (8) PORT F (8)

U
SB

EVENT ROUTING NETWORK

AES

AREFA

AREFB

PORT N (8)

PORT P (8)

CPU

NVM Controller

MORPEEhsalF

DATA BUS

Int. Refs.

Tempref

Digital function
Analog function
Bus masters / Programming / Debug

Oscillator / Crystal / Clock
General Purpose I/O
EBI
4
8331B–AVR–03/12

Atmel AVR XMEGA AU
In Table 2-1 on page 5 a feature summary for the XMEGA AU family is shown, split into one fea-
ture summary column for each sub-family. Each sub-family has identical feature set, but different
memory options, refer to their device datasheet for ordering codes and memory options.

Table 2-1. XMEGA AU feature summary overview.

Feature Details / sub-family A1U A3U A3BU A4U

Pins, I/O
Total 100 64 64 44

Programmable I/O pins 78 50 47 34

Memory

Program memory (KB) 64 - 128 64 - 256 256 16 - 128

Boot memory (KB) 4 - 8 4 - 8 8 4 - 8

SRAM (KB) 4 - 8 4 - 16 16 2 - 8

EEPROM 2 2 - 4 4 1 -2

General purpose registers 16 16 16 16

Package

TQFP 100A 64A 64A 44A

QFN /VQFN – 64M2 64M2 44M1

BGA 100C1/100C2 – – 49C2

QTouch Sense channels 56 56 56 56

DMA Controller Channels 4 4 4 4

Event System
Channels 8 8 8 8

QDEC 3 3 3 3

Crystal Oscillator
0.4 - 16MHz XOSC Yes Yes Yes Yes

32.768 kHz TOSC Yes Yes Yes Yes

Internal Oscillator

2MHz calibrated Yes Yes Yes Yes

32MHz calibrated Yes Yes Yes Yes

128MHz PLL Yes Yes Yes Yes

32.768kHz calibrated Yes Yes Yes Yes

32kHz ULP Yes Yes Yes Yes

Timer / Counter

TC0 - 16-bit, 4 CC 4 4 4 3

TC1 - 16-bit, 2 CC 4 3 2 2

TC2 - 2x 8-bit 4 4 4 2

Hi-Res 4 4 4 3

AWeX 4 2 2 1

RTC 1 1 1

RTC32 1

Battery Backup System Yes
5
8331B–AVR–03/12

Atmel AVR XMEGA AU
Serial Communication

USB full-speed device 1 1 1 1

USART 8 7 6 5

SPI 4 3 3 2

TWI 4 2 2 2

Crypto /CRC

AES-128 Yes Yes Yes Yes

DES Yes Yes Yes Yes

CRC-16 Yes Yes Yes Yes

CRC-32 Yes Yes Yes Yes

External Memory (EBI)

Chip selects 4 – – –

SRAM Yes

SDRAM Yes

Analog to Digital
Converter (ADC)

2 2 2 1

Resolution (bits) 12 12 12 12

Sampling speed (kbps) 2000 2000 2000 2000

Input channels per ADC 16 16 16 12

Conversion channels 4 4 4 4

Digital to Analog
Converter (DAC)

2 1 1 1

Resolution (bits) 12 12 12 12

Sampling speed (kbps) 1000 1000 1000 1000

Output channels per DAC 2 2 2 2

Analog Comparator (AC) 4 4 4 2

Program and Debug
Interface

PDI Yes Yes Yes Yes

JTAG Yes Yes Yes

Boundary scan Yes Yes Yes

Feature Details / sub-family A1U A3U A3BU A4U
6
8331B–AVR–03/12

Atmel AVR XMEGA AU
3. AVR CPU

3.1 Features
• 8/16-bit, high-performance Atmel AVR RISC CPU

– 142 instructions
– Hardware multiplier

• 32x8-bit registers directly connected to the ALU
• Stack in RAM
• Stack pointer accessible in I/O memory space
• Direct addressing of up to 16MB of program memory and 16MB of data memory
• True 16/24-bit access to 16/24-bit I/O registers
• Efficient support for 8-, 16-, and 32-bit arithmetic
• Configuration change protection of system-critical features

3.2 Overview
All Atmel AVR XMEGA devices use the 8/16-bit AVR CPU. The main function of the CPU is to
execute the code and perform all calculations. The CPU is able to access memories, perform
calculations, control peripherals, and execute the program in the flash memory. Interrupt han-
dling is described in a separate section, ”Interrupts and Programmable Multilevel Interrupt
Controller” on page 134.

3.3 Architectural Overview
In order to maximize performance and parallelism, the AVR CPU uses a Harvard architecture
with separate memories and buses for program and data. Instructions in the program memory
are executed with single-level pipelining. While one instruction is being executed, the next
instruction is pre-fetched from the program memory. This enables instructions to be executed on
every clock cycle. For a summary of all AVR instructions, refer to ”Instruction Set Summary” on
page 456. For details of all AVR instructions, refer to http://www.atmel.com/avr.

Figure 3-1. Block diagram of the AVR CPU architecture.
7
8331B–AVR–03/12

Atmel AVR XMEGA AU
The arithmetic logic unit (ALU) supports arithmetic and logic operations between registers or
between a constant and a register. Single-register operations can also be executed in the ALU.
After an arithmetic operation, the status register is updated to reflect information about the result
of the operation.

The ALU is directly connected to the fast-access register file. The 32 x 8-bit general purpose
working registers all have single clock cycle access time allowing single-cycle arithmetic logic
unit operation between registers or between a register and an immediate. Six of the 32 registers
can be used as three 16-bit address pointers for program and data space addressing, enabling
efficient address calculations.

The memory spaces are linear. The data memory space and the program memory space are
two different memory spaces.

The data memory space is divided into I/O registers, SRAM, and external RAM. In addition, the
EEPROM can be memory mapped in the data memory.

All I/O status and control registers reside in the lowest 4KB addresses of the data memory. This
is referred to as the I/O memory space. The lowest 64 addresses can be accessed directly, or as
the data space locations from 0x00 to 0x3F. The rest is the extended I/O memory space, ranging
from 0x0040 to 0x0FFF. I/O registers here must be accessed as data space locations using load
(LD/LDS/LDD) and store (ST/STS/STD) instructions.

The SRAM holds data. Code execution from SRAM is not supported. It can easily be accessed
through the five different addressing modes supported in the AVR architecture. The first SRAM
address is 0x2000.

Data addresses 0x1000 to 0x1FFF are reserved for memory mapping of EEPROM.

The program memory is divided in two sections, the application program section and the boot
program section. Both sections have dedicated lock bits for write and read/write protection. The
SPM instruction that is used for self-programming of the application flash memory must reside in
the boot program section. The application section contains an application table section with sep-
arate lock bits for write and read/write protection. The application table section can be used
forsave storing of nonvolatile data in the program memory.

3.4 ALU - Arithmetic Logic Unit
The arithmetic logic unit supports arithmetic and logic operations between registers or between
a constant and a register. Single-register operations can also be executed. The ALU operates in
direct connection with all 32 general purpose registers. In a single clock cycle, arithmetic opera-
tions between general purpose registers or between a register and an immediate are executed
and the result is stored in the register file. After an arithmetic or logic operation, the status regis-
ter is updated to reflect information about the result of the operation.

ALU operations are divided into three main categories – arithmetic, logical, and bit functions.
Both 8- and 16-bit arithmetic is supported, and the instruction set allows for efficient implementa-
tion of 32-bit aritmetic. The hardware multiplier supports signed and unsigned multiplication and
fractional format.
8
8331B–AVR–03/12

Atmel AVR XMEGA AU
3.4.1 Hardware Multiplier
The multiplier is capable of multiplying two 8-bit numbers into a 16-bit result. The hardware mul-
tiplier supports different variations of signed and unsigned integer and fractional numbers:

• Multiplication of unsigned integers

• Multiplication of signed integers

• Multiplication of a signed integer with an unsigned integer

• Multiplication of unsigned fractional numbers

• Multiplication of signed fractional numbers

• Multiplication of a signed fractional number with an unsigned one

A multiplication takes two CPU clock cycles.

3.5 Program Flow
After reset, the CPU starts to execute instructions from the lowest address in the flash program-
memory ‘0.’ The program counter (PC) addresses the next instruction to be fetched.

Program flow is provided by conditional and unconditional jump and call instructions capable of
addressing the whole address space directly. Most AVR instructions use a 16-bit word format,
while a limited number use a 32-bit format.

During interrupts and subroutine calls, the return address PC is stored on the stack. The stack is
allocated in the general data SRAM, and consequently the stack size is only limited by the total
SRAM size and the usage of the SRAM. After reset, the stack pointer (SP) points to the highest
address in the internal SRAM. The SP is read/write accessible in the I/O memory space,
enabling easy implementation of multiple stacks or stack areas. The data SRAM can easily be
accessed through the five different addressing modes supported in the AVR CPU.

3.6 Instruction Execution Timing
The AVR CPU is clocked by the CPU clock, clkCPU. No internal clock division is used. Figure 3-2
on page 9 shows the parallel instruction fetches and instruction executions enabled by the Har-
vard architecture and the fast-access register file concept. This is the basic pipelining concept
used to obtain up to 1MIPS/MHz performance with high power efficiency.

Figure 3-2. The parallel instruction fetches and instruction executions.

clk

1st Instruction Fetch

1st Instruction Execute
2nd Instruction Fetch

2nd Instruction Execute
3rd Instruction Fetch

3rd Instruction Execute
4th Instruction Fetch

T1 T2 T3 T4

CPU
9
8331B–AVR–03/12

Atmel AVR XMEGA AU
Figure 3-3 on page 10 shows the internal timing concept for the register file. In a single clock
cycle, an ALU operation using two register operands is executed and the result is stored back to
the destination register.

Figure 3-3. Single Cycle ALU Operation

3.7 Status Register
The status register (SREG) contains information about the result of the most recently executed
arithmetic or logic instruction. This information can be used for altering program flow in order to
perform conditional operations. Note that the status register is updated after all ALU operations,
as specified in the instruction set reference. This will in many cases remove the need for using
the dedicated compare instructions, resulting in faster and more compact code.

The status register is not automatically stored when entering an interrupt routine nor restored
when returning from an interrupt. This must be handled by software.

The status register is accessible in the I/O memory space.

3.8 Stack and Stack Pointer
The stack is used for storing return addresses after interrupts and subroutine calls. It can also be
used for storing temporary data. The stack pointer (SP) register always points to the top of the
stack. It is implemented as two 8-bit registers that are accessible in the I/O memory space. Data
are pushed and popped from the stack using the PUSH and POP instructions. The stack grows
from a higher memory location to a lower memory location. This implies that pushing data onto
the stack decreases the SP, and popping data off the stack increases the SP. The SP is auto-
matically loaded after reset, and the initial value is the highest address of the internal SRAM. If
the SP is changed, it must be set to point above address 0x2000, and it must be defined before
any subroutine calls are executed or before interrupts are enabled.

During interrupts or subroutine calls, the return address is automatically pushed on the stack.
The return address can be two or three bytes, depending on program memory size of the device.
For devices with 128KB or less of program memory, the return address is two bytes, and hence
the stack pointer is decremented/incremented by two. For devices with more than 128KB of pro-
gram memory, the return address is three bytes, and hence the SP is decremented/incremented
by three. The return address is popped off the stack when returning from interrupts using the
RETI instruction, and from subroutine calls using the RET instruction.

Total Execution Time

Register Operands Fetch

ALU Operation Execute

Result Write Back

T1 T2 T3 T4

clkCPU
10
8331B–AVR–03/12

Atmel AVR XMEGA AU
The SP is decremented by one when data are pushed on the stack with the PUSH instruction,
and incremented by one when data is popped off the stack using the POP instruction.

To prevent corruption when updating the stack pointer from software, a write to SPL will auto-
matically disable interrupts for up to four instructions or until the next I/O memory write.

3.9 Register File
The register file consists of 32 x 8-bit general purpose working registers with single clock cycle
access time. The register file supports the following input/output schemes:

• One 8-bit output operand and one 8-bit result input

• Two 8-bit output operands and one 8-bit result input

• Two 8-bit output operands and one 16-bit result input

• One 16-bit output operand and one 16-bit result input

Six of the 32 registers can be used as three 16-bit address register pointers for data space
addressing, enabling efficient address calculations. One of these address pointers can also be
used as an address pointer for lookup tables in flash program memory.

Figure 3-4. AVR CPU general purpose working registers.

The register file is located in a separate address space, and so the registers are not accessible
as data memory.

3.9.1 The X-, Y-, and Z- Registers
Registers R26..R31 have added functions besides their general-purpose usage.

These registers can form 16-bit address pointers for addressing data memory. These three
address registers are called the X-register, Y-register, and Z-register. The Z-register can also be
used as an address pointer to read from and/or write to the flash program memory, signature
rows, fuses, and lock bits.

7 0 Addr.

R0 0x00

R1 0x01

R2 0x02

…

R13 0x0D

General R14 0x0E

Purpose R15 0x0F

Working R16 0x10

Registers R17 0x11

…

R26 0x1A X-register Low Byte

R27 0x1B X-register High Byte

R28 0x1C Y-register Low Byte

R29 0x1D Y-register High Byte

R30 0x1E Z-register Low Byte

R31 0x1F Z-register High Byte
11
8331B–AVR–03/12

Atmel AVR XMEGA AU
Figure 3-5. The X-, Y- and Z-registers.

The lowest register address holds the least-significant byte (LSB), and the highest register
address holds the most-significant byte (MSB). In the different addressing modes, these address
registers function as fixed displacement, automatic increment, and automatic decrement (see
the instruction set reference for details).

3.10 RAMP and Extended Indirect Registers
In order to access program memory or data memory above 64KB, the address pointer must be
larger than 16 bits. This is done by concatenating one register to one of the X-, Y-, or Z-registers.
This register then holds the most-significant byte (MSB) in a 24-bit address or address pointer.

These registers are available only on devices with external bus interface and/or more than 64KB
of program or data memory space. For these devices, only the number of bits required to
address the whole program and data memory space in the device is implemented in the
registers.

3.10.1 RAMPX, RAMPY and RAMPZ Registers
The RAMPX, RAMPY and RAMPZ registers are concatenated with the X-, Y-, and Z-registers,
respectively, to enable indirect addressing of the whole data memory space above 64KB and up
to 16MB.

Figure 3-6. The combined RAMPX + X, RAMPY + Y and RAMPZ + Z registers.

When reading (ELPM) and writing (SPM) program memory locations above the first 128KB of
the program memory, RAMPZ is concatenated with the Z-register to form the 24-bit address.
LPM is not affected by the RAMPZ setting.

Bit (individually) 7 R27 0 7 R26 0

X-register XH XL

Bit (X-register) 15 8 7 0

Bit (individually) 7 R29 0 7 R28 0

Y-register YH YL

Bit (Y-register) 15 8 7 0

Bit (individually) 7 R31 0 7 R30 0

Z-register ZH ZL

Bit (Z-register) 15 8 7 0

Bit (Individually) 7 0 7 0 7 0

RAMPX XH XL

Bit (X-pointer) 23 16 15 8 7 0

Bit (Individually) 7 0 7 0 7 0

RAMPY YH YL

Bit (Y-pointer) 23 16 15 8 7 0

Bit (Individually) 7 0 7 0 7 0

RAMPZ ZH ZL

Bit (Z-pointer) 23 16 15 8 7 0
12
8331B–AVR–03/12

Atmel AVR XMEGA AU
3.10.2 RAMPD Register
This register is concatenated with the operand to enable direct addressing of the whole data
memory space above 64KB. Together, RAMPD and the operand will form a 24-bit address.

Figure 3-7. The combined RAMPD + K register.

3.10.3 EIND - Extended Indirect Register
EIND is concatenated with the Z-register to enable indirect jump and call to locations above the
first 128KB (64K words) of the program memory.

Figure 3-8. The combined EIND + Z register.

3.11 Accessing 16-bit Registers
The AVR data bus is 8 bits wide, and so accessing 16-bit registers requires atomic operations.
These registers must be byte-accessed using two read or write operations. 16-bit registers are
connected to the 8-bit bus and a temporary register using a 16-bit bus.

For a write operation, the low byte of the 16-bit register must be written before the high byte. The
low byte is then written into the temporary register. When the high byte of the 16-bit register is
written, the temporary register is copied into the low byte of the 16-bit register in the same clock
cycle.

For a read operation, the low byte of the 16-bit register must be read before the high byte. When
the low byte register is read by the CPU, the high byte of the 16-bit register is copied into the
temporary register in the same clock cycle as the low byte is read. When the high byte is read, it
is then read from the temporary register.

This ensures that the low and high bytes of 16-bit registers are always accessed simultaneously
when reading or writing the register.

Interrupts can corrupt the timed sequence if an interrupt is triggered and accesses the same 16-
bit register during an atomic 16-bit read/write operation. To prevent this, interrupts can be dis-
abled when writing or reading 16-bit registers.

The temporary registers can also be read and written directly from user software.

3.11.1 Accessing 24- and 32-bit Registers
For 24- and 32-bit registers, the read and write access is done in the same way as described for
16-bit registers, except there are two temporary registers for 24-bit registers and three for 32-bit
registers. The least-significant byte must be written first when doing a write, and read first when
doing a read.

3.12 Configuration Change Protection
System critical I/O register settings are protected from accidental modification. The SPM instruc-
tion is protected from accidental execution, and the LPM instruction is protected when reading

Bit (Individually) 7 0 15 0

RAMPD K

Bit (D-pointer) 23 16 15 0

Bit (Individually) 7 0 7 0 7 0

EIND ZH ZL

Bit (D-pointer) 23 16 15 8 7 0
13
8331B–AVR–03/12

Atmel AVR XMEGA AU
the fuses and signature row. This is handled globally by the configuration change protection
(CCP) register. Changes to the protected I/O registers or bits, or execution of protected instruc-
tions, are only possible after the CPU writes a signature to the CCP register. The different
signatures are described in the register description.

There are two modes of operation: one for protected I/O registers, and one for the protected
instructions, SPM/LPM.

3.12.1 Sequence for write operation to protected I/O registers

1. The application code writes the signature that enable change of protected I/O registers
to the CCP register.

2. Within four instruction cycles, the application code must write the appropriate data to
the protected register. Most protected registers also contain a write enable/change
enable bit. This bit must be written to one in the same operation as the data are written.
The protected change is immediately disabled if the CPU performs write operations to
the I/O register or data memory or if the SPM, LPM, or SLEEP instruction is executed.

3.12.2 Sequence for execution of protected SPM/LPM

1. The application code writes the signature for the execution of protected SPM/LPM to
the CCP register.

2. Within four instruction cycles, the application code must execute the appropriate
instruction. The protected change is immediately disabled if the CPU performs write
operations to the data memory or if the SLEEP instruction is executed.

Once the correct signature is written by the CPU, interrupts will be ignored for the duration of the
configuration change enable period. Any interrupt request (including non-maskable interrupts)
during the CCP period will set the corresponding interrupt flag as normal, and the request is kept
pending. After the CCP period is completed, any pending interrupts are executed according to
their level and priority. DMA requests are still handled, but do not influence the protected config-
uration change enable period. A signature written by DMA is ignored.

3.13 Fuse Lock
For some system-critical features, it is possible to program a fuse to disable all changes to the
associated I/O control registers. If this is done, it will not be possible to change the registers from
the user software, and the fuse can only be reprogrammed using an external programmer.
Details on this are described in the datasheet module where this feature is available.
14
8331B–AVR–03/12

Atmel AVR XMEGA AU
3.14 Register Descriptions

3.14.1 CCP – Configuration Change Protection register

• Bit 7:0 – CCP[7:0]: Configuration Change Protection
The CCP register must be written with the correct signature to enable change of the protected
I/O register or execution of the protected instruction for a maximum period of four CPU instruc-
tion cycles. All interrupts are ignored during these cycles. After these cycles, interrupts will
automatically be handled again by the CPU, and any pending interrupts will be executed accord-
ing to their level and priority. When the protected I/O register signature is written, CCP[0] will
read as one as long as the protected feature is enabled. Similarly when the protected SPM/LPM
signature is written, CCP[1] will read as one as long as the protected feature is enabled.
CCP[7:2] will always read as zero. Table 3-1 on page 15 shows the signature for the various
modes.

3.14.2 RAMPD – Extended Direct Addressing register
This register is concatenated with the operand for direct addressing (LDS/STS) of the whole
data memory space on devices with more than 64KB of data memory. This register is not avail-
able if the data memory, including external memory, is less than 64KB.

• Bit 7:0 – RAMPD[7:0]: Extended Direct Addressing bits
These bits hold the MSB of the 24-bit address created by RAMPD and the 16-bit operand. Only
the number of bits required to address the available data memory is implemented for each
device. Unused bits will always read as zero.

3.14.3 RAMPX – Extended X-Pointer register
This register is concatenated with the X-register for indirect addressing (LD/LDD/ST/STD) of the
whole data memory space on devices with more than 64KB of data memory. This register is not
available if the data memory, including external memory, is less than 64KB.

Bit 7 6 5 4 3 2 1 0

+0x04 CCP[7:0] CCP

Read/Write W W W W W W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 3-1. Modes of CPU change protection.

Signature Group Configuration Description

0x9D SPM Protected SPM/LPM

0xD8 IOREG Protected IO register

Bit 7 6 5 4 3 2 1 0

+0x08 RAMPD[7:0] RAMPD

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
15
8331B–AVR–03/12

Atmel AVR XMEGA AU
• Bit 7:0 – RAMPX[7:0]: Extended X-pointer Address bits
These bits hold the MSB of the 24-bit address created by RAMPX and the 16-bit X-register. Only
the number of bits required to address the available data memory is implemented for each
device. Unused bits will always read as zero.

3.14.4 RAMPY – Extended Y-Pointer register
This register is concatenated with the Y-register for indirect addressing (LD/LDD/ST/STD) of the
whole data memory space on devices with more than 64KB of data memory. This register is not
available if the data memory, including external memory, is less than 64KB.

• Bit 7:0 – RAMPY[7:0]: Extended Y-pointer Address bits
These bits hold the MSB of the 24-bit address created by RAMPY and the 16-bit Y-register. Only
the number of bits required to address the available data memory is implemented for each
device. Unused bits will always read as zero.

3.14.5 RAMPZ – Extended Z-Pointer register
This register is concatenated with the Z-register for indirect addressing (LD/LDD/ST/STD) of the
whole data memory space on devices with more than 64KB of data memory. RAMPZ is concat-
enated with the Z-register when reading (ELPM) program memory locations above the first 64KB
and writing (SPM) program memory locations above the first 128KB of the program memory.

This register is not available if the data memory, including external memory and program mem-
ory in the device, is less than 64KB.

• Bit 7:0 – RAMPZ[7:0]: Extended Z-pointer Address bits
These bits hold the MSB of the 24-bit address created by RAMPZ and the 16-bit Z-register. Only
the number of bits required to address the available data and program memory is implemented
for each device. Unused bits will always read as zero.

3.14.6 EIND – Extended Indirect register
This register is concatenated with the Z-register for enabling extended indirect jump (EIJMP)
and call (EICALL) to the whole program memory space on devices with more than 128KB of pro-
gram memory. The register should be used for jumps to addresses below 128KB if

Bit 7 6 5 4 3 2 1 0

+0x09 RAMPX[7:0] RAMPX

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x0A RAMPY[7:0] RAMPY

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x0B RAMPZ[7:0] RAMPZ

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
16
8331B–AVR–03/12

Atmel AVR XMEGA AU
ECALL/EIJMP are used, and it will not be used if CALL and IJMP commands are used. For jump
or call to addresses below 128KB, this register is not used. This register is not available if the
program memory in the device is less than 128KB.

• Bit 7:0 – EIND[7:0]: Extended Indirect Address bits
These bits hold the MSB of the 24-bit address created by EIND and the 16-bit Z-register. Only
the number of bits required to access the available program memory is implemented for each
device. Unused bits will always read as zero.

3.14.7 SPL – Stack Pointer Register Low
The SPH and SPL register pair represent the 16-bit SP value. The SP holds the stack pointer
that points to the top of the stack. After reset, the stack pointer points to the highest internal
SRAM address. To prevent corruption when updating the stack pointer from software, a write to
SPL will automatically disable interrupts for the next four instructions or until the next I/O mem-
ory write.

Only the number of bits required to address the available data memory, including external mem-
ory, up to 64KB is implemented for each device. Unused bits will always read as zero.

Note: 1. Refer to specific device datasheets for exact initial values.

• Bit 7:0 – SP[7:0]: Stack Pointer Register Low
These bits hold the LSB of the 16-bit stack pointer (SP).

3.14.8 SPH – Stack Pointer Register High

Note: 1. Refer to specific device datasheets for exact initial values.

• Bit 7:0 – SP[15:8]: Stack Pointer Register High
These bits hold the MSB of the 16-bit stack pointer (SP).

Bit 7 6 5 4 3 2 1 0

+0x0C EIND[7:0] EIND

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x0D SP[7:0] SPL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value(1) 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1

Bit 7 6 5 4 3 2 1 0

+0x0E SP[15:8] SPH

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value(1) 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1
17
8331B–AVR–03/12

Atmel AVR XMEGA AU
3.14.9 SREG – Status Register
The status register (SREG) contains information about the result of the most recently executed
arithmetic or logic instruction.

• Bit 7 – I: Global Interrupt Enable
The global interrupt enable bit must be set for interrupts to be enabled. If the global interrupt
enable register is cleared, none of the interrupts are enabled independent of the individual inter-
rupt enable settings. This bit is not cleared by hardware after an interrupt has occurred. This bit
can be set and cleared by the application with the SEI and CLI instructions, as described in
“Instruction Set Description.” Changing the I flag through the I/O-register result in a one-cycle
wait state on the access.

• Bit 6 – T: Bit Copy Storage
The bit copy instructions bit load (BLD) and bit store (BST) use the T bit as source or destination
for the operated bit. A bit from a register in the register file can be copied into this bit by the BST
instruction, and this bit can be copied into a bit in a register in the register file by the BLD
instruction.

• Bit 5 – H: Half Carry Flag
The half carry flag (H) indicates a half carry in some arithmetic operations. Half carry Is useful in
BCD arithmetic. See “Instruction Set Description” for detailed information.

• Bit 4 – S: Sign Bit, S = N ⊕ V
The sign bit is always an exclusive or between the negative flag, N, and the two’s complement
overflow flag, V. See “Instruction Set Description” for detailed information.

• Bit 3 – V: Two’s Complement Overflow Flag
The two’s complement overflow flag (V) supports two’s complement arithmetic. See “Instruction
Set Description” for detailed information.

• Bit 2 – N: Negative Flag
The negative flag (N) indicates a negative result in an arithmetic or logic operation. See “Instruc-
tion Set Description” for detailed information.

• Bit 1 – Z: Zero Flag
The zero flag (Z) indicates a zero result in an arithmetic or logic operation. See “Instruction Set
Description” for detailed information.

• Bit 0 – C: Carry Flag
The carry flag (C) indicates a carry in an arithmetic or logic operation. See “Instruction Set
Description” for detailed information.

Bit 7 6 5 4 3 2 1 0

+0x0F I T H S V N Z C SREG

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
18
8331B–AVR–03/12

Atmel AVR XMEGA AU
3.15 Register Summary

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page

+0x00 Reserved – – – – – – – –

+0x01 Reserved – – – – – – – –

+0x02 Reserved – – – – – – – –

+0x03 Reserved – – – – – – – –

+0x04 CCP CCP[7:0] 15

+0x05 Reserved – – – – – – – –

+0x06 Reserved – – – – – – – –

+0x07 Reserved – – – – – – – –

+0x08 RAMPD RAMPD[7:0] 15

+0x09 RAMPX RAMPX[7:0] 15

+0x0A RAMPY RAMPY[7:0] 16

+0x0B RAMPZ RAMPZ[7:0] 16

+0x0C EIND EIND[7:0] 16

+0x0D SPL SPL[7:0] 17

+0x0E SPH SPH[7:0] 17

+0x0F SREG I T H S V N Z C 18
19
8331B–AVR–03/12

Atmel AVR XMEGA AU
4. Memories

4.1 Features
• Flash program memory

– One linear address space
– In-system programmable
– Self-programming and boot loader support
– Application section for application code
– Application table section for application code or data storage
– Boot section for application code or bootloader code
– Separate read/write protection lock bits for all sections
– Built in fast CRC check of a selectable flash program memory section

• Data memory
– One linear address space
– Single-cycle access from CPU
– SRAM
– EEPROM

Byte and page accessible
Optional memory mapping for direct load and store

– I/O memory
Configuration and status registers for all peripherals and modules
16 bit-accessible general purpose registers for global variables or flags

– External memory support
SRAM
SDRAM
Memory mapped external hardware

– Bus arbitration
Deterministic handling of priority between CPU, DMA controller, and other bus masters

– Separate buses for SRAM, EEPROM, I/O memory, and external memory access
Simultaneous bus access for CPU and DMA controller

• Production signature row memory for factory programmed data
– ID for each microcontroller device type
– Serial number for each device
– Calibration bytes for factory calibrated peripherals

• User signature row
– One flash page in size
– Can be read and written from software
– Content is kept after chip erase

4.2 Overview
This section describes the different memory sections. The AVR architecture has two main mem-
ory spaces, the program memory and the data memory. Executable code can reside only in the
program memory, while data can be stored in the program memory and the data memory. The
data memory includes the internal SRAM, and EEPROM for nonvolatile data storage. All mem-
ory spaces are linear and require no memory bank switching. Nonvolatile memory (NVM)
spaces can be locked for further write and read/write operations. This prevents unrestricted
access to the application software.
20
8331B–AVR–03/12

Atmel AVR XMEGA AU
A separate memory section contains the fuse bytes. These are used for configuring important
system functions, and can only be written by an external programmer.

4.3 Flash Program Memory
All XMEGA devices contain on-chip in-system reprogrammable flash memory for program stor-
age. The flash memory can be accessed for read and write from an external programmer
through the PDI or from application software running in the device.

All AVR CPU instructions are 16 or 32 bit wide, and each flash location is 16 bits wide. The flash
memory is organized in two main sections, the application section and the boot loader section,
as shown in Figure 4-1 on page 21. The sizes of the different sections are fixed, but device-
dependent. These two sections have separate lock bits, and can have different levels of protec-
tion. The store program memory (SPM) instruction, used to write to the flash from the application
software, will only operate when executed from the boot loader section.

The application section contains an application table section with separate lock settings. This
enables safe storage of nonvolatile data in the program memory.

Figure 4-1. Flash memory sections.

4.3.1 Application Section
The Application section is the section of the flash that is used for storing the executable applica-
tion code. The protection level for the application section can be selected by the boot lock bits
for this section. The application section can not store any boot loader code since the SPM
instruction cannot be executed from the application section.

4.3.2 Application Table Section
The application table section is a part of the application section of the flash memory that can be
used for storing data. The size is identical to the boot loader section. The protection level for the

Application Flash
Section

0x000000

End Application
Start Boot Loader

Flashend

Application Table
Flash Section

Boot Loader Flash
Section
21
8331B–AVR–03/12

Atmel AVR XMEGA AU
application table section can be selected by the boot lock bits for this section. The possibilities
for different protection levels on the application section and the application table section enable
safe parameter storage in the program memory. If this section is not used for data, application
code can reside here.

4.3.3 Boot Loader Section
While the application section is used for storing the application code, the boot loader software
must be located in the boot loader section because the SPM instruction can initiate program-
ming when executing from this section. The SPM instruction can access the entire flash,
including the boot loader section itself. The protection level for the boot loader section can be
selected by the boot loader lock bits. If this section is not used for boot loader software, applica-
tion code can be stored here.

4.3.4 Production Signature Row
The production signature row is a separate memory section for factory programmed data. It con-
tains calibration data for functions such as oscillators and analog modules. Some of the
calibration values will be automatically loaded to the corresponding module or peripheral unit
during reset. Other values must be loaded from the signature row and written to the correspond-
ing peripheral registers from software. For details on calibration conditions such as temperature,
voltage references, etc. refer to device datasheet.

The production signature row also contains an ID that identifies each microcontroller device type
and a serial number for each manufactured device. The serial number consists of the production
lot number, wafer number, and wafer coordinates for the device.

The production signature row cannot be written or erased, but it can be read from application
software and external programmers.

4.3.5 User Signature Row
The user signature row is a separate memory section that is fully accessible (read and write)
from application software and external programmers. It is one flash page in size, and is meant
for static user parameter storage, such as calibration data, custom serial number, identification
numbers, random number seeds, etc. This section is not erased by chip erase commands that
erase the flash, and requires a dedicated erase command. This ensures parameter storage dur-
ing multiple program/erase operations and on-chip debug sessions.

4.4 Fuses and Lockbits
The fuses are used to configure important system functions, and can only be written from an
external programmer. The application software can read the fuses. The fuses are used to config-
ure reset sources such as brownout detector and watchdog, startup configuration, JTAG enable,
and JTAG user ID.

The lock bits are used to set protection levels for the different flash sections (i.e., if read and/or
write access should be blocked). Lock bits can be written by external programmers and applica-
tion software, but only to stricter protection levels. Chip erase is the only way to erase the lock
bits. To ensure that flash contents are protected even during chip erase, the lock bits are erased
after the rest of the flash memory has been erased.

An unprogrammed fuse or lock bit will have the value one, while a programmed fuse or lock bit
will have the value zero.

Both fuses and lock bits are reprogrammable like the flash program memory.
22
8331B–AVR–03/12

Atmel AVR XMEGA AU
4.5 Data Memory
The data memory contains the I/O memory, internal SRAM, optionally memory mapped
EEPROM, and external memory, if available. The data memory is organized as one continuous
memory section, as shown in Figure 4-2 on page 23.

Figure 4-2. Data memory map.

I/O memory, EEPROM, and SRAM will always have the same start addresses for all XMEGA
devices. The address space for external memory will always start at the end of internal SRAM
and end at address 0xFFFFFF.

4.6 Internal SRAM
The internal SRAM always starts at hexadecimal address 0x2000. SRAM is accessed by the
CPU using the load (LD/LDS/LDD) and store (ST/STS/STD) instructions.

4.7 EEPROM
All XMEGA devices have EEPROM for nonvolatile data storage. It is addressable in a separate
data space (default) or memory mapped and accessed in normal data space. The EEPROM
supports both byte and page access. Memory mapped EEPROM allows highly efficient
EEPROM reading and EEPROM buffer loading. When doing this, EEPROM is accessible using
load and store instructions. Memory mapped EEPROM will always start at hexadecimal address
0x1000.

I/O Memory
(Up to 4 KB)

EEPROM
(Up to 4 KB)

Internal SRAM

External Memory
(0 to 16 MB)

0x000000

0x001000

0xFFFFFF

0x002000

Start/End
Address Data Memory
23
8331B–AVR–03/12

Atmel AVR XMEGA AU
4.8 I/O Memory
The status and configuration registers for peripherals and modules, including the CPU, are
addressable through I/O memory locations. All I/O locations can be accessed by the load
(LD/LDS/LDD) and store (ST/STS/STD) instructions, which are used to transfer data between
the 32 registers in the register file and the I/O memory. The IN and OUT instructions can
address I/O memory locations in the range of 0x00 0x3F directly. In the address range 0x00 -
0x1F, single-cycle instructions for manipulation and checking of individual bits are available.

4.8.1 General Purpose I/O Registers
The lowest 16 I/O memory addresses are reserved as general purpose I/O registers. These reg-
isters can be used for storing global variables and flags, as they are directly bit-accessible using
the SBI, CBI, SBIS, and SBIC instructions.

4.9 External Memory
Up to four ports are dedicated to external memory, supporting external SRAM, SDRAM, and
memory mapped peripherals such as LCD displays. For details, refer to ”EBI – External Bus
Interface” on page 335. The external memory address space will always start at the end of inter-
nal SRAM.

4.10 Data Memory and Bus Arbitration
Since the data memory is organized as four separate sets of memories, the different bus mas-
ters (CPU, DMA controller read and DMA controller write, etc.) can access different memory
sections at the same time. See Figure 4-3 on page 24. The USB module acts as a bus master
and is connected directly to internal SRAM through a pseudo-dualport (PDP) interface.

Figure 4-3. Bus access.

Peripherals and system modules

Bus matrix

CPUDMA

RAM

DAC

OCD

USART

SPI

Timer /
Counter

TWI

USBInterrupt
Controller

Power
Management

SRAM

External
Programming

External
Memory

EBI

PDIAVR core

CH0

ADC

AC

Crypto
modules

Event System
Controller

Oscillator
Control

CH1

CH2 CH3

Non-Volatile
Memory

EEPROM

Flash CRC

Real Time
Counter

I/O

NVM
Controller

Battery
Backup
24
8331B–AVR–03/12

Atmel AVR XMEGA AU
4.10.1 Bus Priority
When several masters request access to the same bus, the bus priority is in the following order
(from higher to lower priority):

1. Bus Master with ongoing access.

2. Bus Master with ongoing burst.

a. Alternating DMA controller read and DMA controller write when they access the
same data memory section.

3. Bus Master requesting burst access.

a. CPU has priority.

4. Bus Master requesting bus access.

a. CPU has priority.

4.11 Memory Timing
Read and write access to the I/O memory takes one CPU clock cycle. A write to SRAM takes
one cycle, and read from SRAM takes two cycles. For burst read (DMA), new data are available
every cycle. EEPROM page load (write) takes one cycle, and three cycles are required for read.
For burst read, new data are available every second cycle. External memory has multi-cycle
read and write. The number of cycles depends on the type of memory and configuration of the
external bus interface. Refer to the instruction summary for more details on instructions and
instruction timing.

4.12 Device ID and Revision
Each device has a three-byte device ID. This ID identifies Atmel as the manufacturer of the
device and the device type. A separate register contains the revision number of the device.

4.13 JTAG Disable
It is possible to disable the JTAG interface from the application software. This will prevent all
external JTAG access to the device until the next device reset or until JTAG is enabled again
from the application software. As long as JTAG is disabled, the I/O pins required for JTAG can
be used as normal I/O pins.

4.14 I/O Memory Protection
Some features in the device are regarded as critical for safety in some applications. Due to this,
it is possible to lock the I/O register related to the clock system, the event system and the
advanced waveform extensions. As long as the lock is enabled, all related I/O registers are
locked and they can not be written from the application software. The lock registers themselves
are protected by the configuration change protection mechanism. For details refer to ”Configura-
tion Change Protection” on page 13.
25
8331B–AVR–03/12

Atmel AVR XMEGA AU
4.15 Register Description – NVM Controller

4.15.1 ADDR0 – Address register 0
The ADDR0, ADDR1, and ADDR2 registers represent the 24-bit value ADDR. This is used for
addressing all NVM sections for read, write, and CRC operations.

• Bit 7:0 – ADDR[7:0]: Address Register Byte 0
This register gives the address low byte when accessing NVM locations.

4.15.2 ADDR1 – Address register 1

• Bit 7:0 – ADDR[15:8]: Address Register Byte 1
This register gives the address high byte when accessing NVM locations.

4.15.3 ADDR2 – Address register 2

• Bit 7:0 – ADDR[23:16]: Address Register Byte 2
This register gives the address extended byte when accessing NVM locations.

4.15.4 DATA0 – Data register 0
The DATA0, DATA1, and DATA registers represent the 24-bit value DATA. This holds data dur-
ing NVM read, write, and CRC access.

• Bit 7:0 – DATA[7:0]: Data Register Byte 0
This register gives the data value byte 0 when accessing NVM locations.

Bit 7 6 5 4 3 2 1 0

+0x00 ADDR[7:0] ADDR0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 1 1 1 1 1 1 1 1

Bit 7 6 5 4 3 2 1 0

+0x01 ADDR[15:8] ADDR1

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x02 ADDR[23:16] ADDR2

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x04 DATA[7:0] DATA0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
26
8331B–AVR–03/12

Atmel AVR XMEGA AU
4.15.5 DATA1 – Data register 1

• Bit 7:0 – DATA[15:8]: Data Register Byte 1
This register gives the data value byte 1 when accessing NVM locations.

4.15.6 DATA2 – Data register 2

• Bit 7:0 – DATA[23:16]: Data Register 2
This register gives the data value byte 2 when accessing NVM locations.

4.15.7 CMD – Command Register

• Bit 7 – Reserved
This bit is unused and reserved for future use. For compatibility with future devices, always write
this bit to zero when this register is written.

• Bit 6:0 – CMD[6:0]: Command
These bits define the programming commands for the flash. Bit 6 is only set for external pro-
gramming commands. See ”Memory Programming” on page 431” for programming commands.

4.15.8 CTRLA – Control register A

• Bit 7:1 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

Bit 7 6 5 4 3 2 1 0

+0x05 DATA[15:8] DATA1

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x06 DATA[23:16] DATA2

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x0A – CMD[6:0] CMD

Read/Write R R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x0B – – – – – – – CMDEX CTRLA

Read/Write R R R R R R R S

Initial Value 0 0 0 0 0 0 0 0
27
8331B–AVR–03/12

Atmel AVR XMEGA AU
• Bit 0 – CMDEX: Command Execute
Setting this bit will execute the command in the CMD register. This bit is protected by the config-
uration change protection (CCP) mechanism. Refer to ”Configuration Change Protection” on
page 13 for details on the CCP.

4.15.9 CTRLB – Control register B

• Bit 7:4 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

• Bit 3 – EEMAPEN: EEPROM Data Memory Mapping Enable
Setting this bit enables data memory mapping of the EEPROM section. The EEPROM can then
be accessed using load and store instructions.

• Bit 2 – FPRM: Flash Power Reduction Mode
Setting this bit enables power saving for the flash memory. If code is running from the applica-
tion section, the boot loader section will be turned off, and vice versa. If access to the section
that is turned off is required, the CPU will be halted for a time equal to the start-up time from the
idle sleep mode.

• Bit 1 – EPRM: EEPROM Power Reduction Mode
Setting this bit enables power saving for the EEPROM. The EEPROM will then be turned off in a
manner equal to entering sleep mode. If access is required, the bus master will be halted for a
time equal the start-up time from idle sleep mode.

• Bit 0 – SPMLOCK: SPM Locked
This bit can be written to prevent all further self-programming. The bit is cleared at reset, and
cannot be cleared from software. This bit is protected by the configuration change protection
(CCP) mechanism. Refer to ”Configuration Change Protection” on page 13 for details on the
CCP.

4.15.10 INTCTRL – Interrupt Control register

• Bit 7:4 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

Bit 7 6 5 4 3 2 1 0

+0x0C – – – – EEMAPEN FPRM EPRM SPMLOCK CTRLB

Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x0D – – – – SPMLVL[1:0] EELVL[1:0] INTCTRL

Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
28
8331B–AVR–03/12

Atmel AVR XMEGA AU
• Bit 3:2 – SPMLVL[1:0]: SPM Ready Interrupt Level
These bits enable the interrupt and select the interrupt level, as described in ”Interrupts and Pro-
grammable Multilevel Interrupt Controller” on page 134. This is a level interrupt that will be
triggered only when the NVMBUSY flag in the STATUS register is set to zero. Thus, the interrupt
should not be enabled before triggering an NVM command, as the NVMBUSY flag will not be set
before the NVM command is triggered. The interrupt should be disabled in the interrupt handler.

• Bit 1:0 – EELVL[1:0]: EEPROM Ready Interrupt Level
These bits enable the EEPROM ready interrupt and select the interrupt level, as described in
”Interrupts and Programmable Multilevel Interrupt Controller” on page 134. This is a level inter-
rupt that will be triggered only when the NVMBUSY flag in the STATUS register is set to zero.
Thus, the interrupt should not be enabled before triggering an NVM command, as the NVM-
BUSY flag will not be set before the NVM command is triggered. The interrupt should be
disabled in the interrupt handler.

4.15.11 STATUS – Status register

• Bit 7 – NVMBUSY: Nonvolatile Memory Busy
The NVMBUSY flag indicates if the NVM (Flash, EEPROM, lockbit) is being programmed. Once
an operation is started, this flag is set and remains set until the operation is completed. The
NVMBUSY flag is automatically cleared when the operation is finished.

• Bit 6 – FBUSY: Flash Busy
The FBUSY flag indicates if a flash programming operation is initiated. Once an operation is
started the FBUSY flag is set and the application section cannot be accessed. The FBUSY flag
is automatically cleared when the operation is finished.

• Bit 5:2 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

• Bit 1 – EELOAD: EEPROM Page Buffer Active Loading
The EELOAD flag indicates that the temporary EEPROM page buffer has been loaded with one
or more data bytes. It remains set until an EEPROM page write or a page buffer flush operation
is executed. For more details see ”Flash and EEPROM Programming Sequences” on page 434.

• Bit 0 – FLOAD: Flash Page Buffer Active Loading
The FLOAD flag indicates that the temporary flash page buffer has been loaded with one or
more data bytes. It remains set until an application page write, boot page write, or page buffer
flush operation is executed. For more details see ”Flash and EEPROM Programming
Sequences” on page 434.

Bit 7 6 5 4 3 2 1 0

+0x04 NVMBUSY FBUSY – – – – EELOAD FLOAD STATUS

Read/Write R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0
29
8331B–AVR–03/12

Atmel AVR XMEGA AU
4.15.12 LOCKBITS – Lock Bit register

This register is a mapping of the NVM lock bits into the I/O memory space, which enable direct
read access from the application software. Refer to ”LOCKBITS – Lock Bit register” on page 35
for description.

Bit 7 6 5 4 3 2 1 0

+0x07 BLBB[1:0] BLBA[1:0] BLBAT[1:0] LB[1:0] LOCKBITS

Read/Write R R R R R R R R

Initial Value 1 1 1 1 1 1 1 1
30
8331B–AVR–03/12

Atmel AVR XMEGA AU
4.16 Register Descriptions – Fuses and Lock bits

4.16.1 FUSEBYTE0 – Fuse Byte 0

• Bit 7 – JTAGUID[7:0]: JTAG USER ID
These fuses can be used to set the default JTAG user ID for the device. During reset, the
JTAGUID fuse bits will be loaded into the MCU JTAG user ID register.

4.16.2 FUSEBYTE1 – Fuse Byte1

• Bit 7:4 – WDWPER[3:0]: Watchdog Window Timeout Period
These fuse bits are used to set initial value of the closed window for the Watchdog Timer in Win-
dow Mode. During reset these fuse bits are automatically written to the WPER bits Watchdog
Window Mode Control Register. Refer to ”WINCTRL – Window Mode Control register” on page
131 for details.

• Bit 3:0 – WDPER[3:0]: Watchdog Timeout Period
These fuse bits are used to set the initial value of the watchdog timeout period. During reset
these fuse bits are automatically written to the PER bits in the watchdog control register. Refer to
”CTRL – Control register” on page 130 for details.

4.16.3 FUSEBYTE2 – Fuse Byte2

• Bit 7 – Reserved
This bit is unused and reserved for future use. For compatibility with future devices, always write
this bit to one when this register is written.

Bit 7 6 5 4 3 2 1 0

+0x00 JTAGUID[7:0] FUSEBYTE0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 1 1 1 1 1 1 1 1

Bit 7 6 5 4 3 2 1 0

+0x01 WDWPER[3:0] WDPER[3:0] FUSEBYTE1

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x02 – BOOTRST TOSCSEL – – – BODPD[1:0] FUSEBYTE2

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 1 1 1 1 1 1 1 1
31
8331B–AVR–03/12

Atmel AVR XMEGA AU
• Bit 6 – BOOTRST: Boot Loader Section Reset Vector
This fuse can be programmed so the reset vector is pointing to the first address in the boot
loader flash section. The device will then start executing from the boot loader flash section after
reset.

• Bit 5 – TOSCSEL: 32.768kHz Timer Oscillator Pin Selection
This fuse is used to select pin location for the 32.768kHz timer oscillator (TOSC). This fuse is
available on devices where XTAL and TOSC pins by default are shared.

Note: 1. See device datasheet for alternate TOSC position.

• Bit 4:2 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to one when this register is written.

• Bit 1:0 – BODPD[1:0]: BOD Operation in Power-down Mode
These fuse bits set the BOD operation mode in all sleep modes except idle mode.

For details on the BOD and BOD operation modes, refer to ”Brownout Detection” on page 115.

4.16.4 FUSEBYTE4 – Fuse Byte4

• Bit 7:5 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to one when this register is written.

Table 4-1. Boot reset fuse.

BOOTRST Reset Address

0 Reset vector = Boot loader reset

1 Reset vector = Application reset (address 0x0000)

Table 4-2. TOSCSEL fuse.

TOSCSEL Group Configuration Description

0 ALTERNATE(1) TOSC1/2 on separate pins

1 XTAL TOSC1/2 shared with XTAL

Table 4-3. BOD operation modes in sleep modes.

BODPD[1:0] Description

00 Reserved

01 BOD enabled in sampled mode

10 BOD enabled continuously

11 BOD disabled

Bit 7 6 5 4 3 2 1 0

+0x04 – – – RSTDISBL STARTUPTIME[1:0] WDLOCK JTAGEN FUSEBYTE4

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 1 1 1 1 1 1 1 0
32
8331B–AVR–03/12

Atmel AVR XMEGA AU
• Bit: 4 – RSTDISBL: External Reset Disable
This fuse can be programmed to disable the external reset pin functionality. When this is done
pulling the pin low will not cause an external reset. A reset is required before this bit will be read
correctly after it is changed.

• Bit 3:2 – STARTUPTIME[1:0]: Start-up time
These fuse bits can be used to set at a programmable timeout period from all reset sources are
released until the internal reset is released from the delay counter. A reset is required before
these bits will be read correctly after they are changed.

The delay is timed from the 1kHz output of the ULP oscillator. Refer to ”Reset Sequence” on
page 114 for details.

• Bit 1 – WDLOCK: Watchdog Timer Lock
The WDLOCK fuse can be programmed to lock the watchdog timer configuration. When this
fuse is programmed the watchdog timer configuration cannot be changed, and the ENABLE bit
in the watchdog CTRL register is automatically set at reset and cannot be cleared from the appli-
cation software. The WEN bit in the watchdog WINCTRL register is not set automatically and
needs to be set from software. A reset is required before this bit will be read correctly after it is
changed.

• Bit 0 – JTAGEN: JTAG Enabled
This fuse controls whether or not the JTAG interface is enabled.

When the JTAG interface is disabled all access through JTAG is prohibited, and the device can
be accessed using only the program and debug interface (PDI). The JTAGEN fuse is available
on devices with JTAG interface. A reset is required before this bit will be read correctly after it is
changed.

Table 4-4. Start-up time.

STARTUPTIME[1:0] 1kHz ULP Oscillator Cycles

00 64

01 4

10 Reserved

11 0

Table 4-5. Watchdog timer lock.

WDLOCK Description

0 Watchdog timer locked for modifications

1 Watchdog timer not locked

Table 4-6. JTAG Enable

JTAGEN Description

0 JTAG enabled

1 JTAG disabled
33
8331B–AVR–03/12

Atmel AVR XMEGA AU
4.16.5 FUSEBYTE5 – Fuse Byte 5

• Bit 7:6 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to one when this register is written.

• Bit 5:4 – BODACT[1:0]: BOD Operation in Active Mode
These fuse bits set the BOD operation mode when the device is in active and idle modes. For
details on the BOD and BOD operation modes, refer to ”Brownout Detection” on page 115.

• Bit 3 – EESAVE: EEPROM is Preserved through the Chip Erase
A chip erase command will normally erase the flash, EEPROM and internal SRAM. If this fuse is
programmed, the EEPROM is not erased during chip erase. This is useful if EEPROM is used to
store data independent of the software revision.

Changes to the EESAVE fuse bit take effect immediately after the write timeout elapses. Hence,
it is possible to update EESAVE and perform a chip erase according to the new setting of
EESAVE without leaving and reentering programming mode.

• Bit 2:0 – BODLEVEL[2:0]: Brownout Detection Voltage Level
These fuse bits sets the BOD voltage level. Refer to ”Reset System” on page 113 for details. For
BOD level nominal values, see Table 9-2 on page 116.

Bit 7 6 5 4 3 2 1 0

+0x05 – – BODACT[1:0] EESAVE BODLEVEL[2:0] FUSEBYTE5

Read/Write R R R/W R/W R/W R/W R/W R/W

Initial Value 1 1 – – – – – –

Table 4-7. BOD operation modes in active and idle modes.

BODACT[1:0] Description

00 Reserved

01 BOD enabled in sampled mode

10 BOD enabled continuously

11 BOD disabled

Table 4-8. EEPROM preserved through chip erase

EESAVE Description

0 EEPROM is preserved during chip erase

1 EEPROM is erased during chip erase
34
8331B–AVR–03/12

Atmel AVR XMEGA AU
4.16.6 LOCKBITS – Lock Bit register

• Bit 7:6 – BLBB[1:0]: Boot Lock Bit Boot Loader Section
These lock bits control the software security level for accessing the boot loader section. The
BLBB bits can only be written to a more strict locking. Resetting the BLBB bits is possible by
executing a chip erase command.

• Bit 5:4 – BLBA[1:0]: Boot Lock Bit Application Section
These lock bits control the software security level for accessing the application section. The
BLBA bits can only be written to a more strict locking. Resetting the BLBA bits is possible by
executing a chip erase command.

Bit 7 6 5 4 3 2 1 0

+0x07 BLBB[1:0] BLBA[1:0] BLBAT[1:0] LB[1:0] LOCKBITS

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 1 1 1 1 1 1 1 1

Table 4-9. Boot lock bit for the boot loader section.

BLBB[1:0] Group Configuration Description

11 NOLOCK
No lock – no restrictions for SPM and (E)LPM accessing
the boot loader section.

10 WLOCK
Write lock – SPM is not allowed to write the boot loader
section.

01 RLOCK

Read lock – (E)LPM executing from the application
section is not allowed to read from the boot loader
section.
If the interrupt vectors are placed in the application
section, interrupts are disabled while executing from the
boot loader section.

00 RWLOCK

Read and write lock – SPM is not allowed to write to the
boot loader section, and (E)LPM executing from the
application section is not allowed to read from the boot
loader section.

If the interrupt vectors are placed in the application
section, interrupts are disabled while executing from the
boot loader section.
35
8331B–AVR–03/12

Atmel AVR XMEGA AU
• Bit 3:2 – BLBAT[1:0]: Boot Lock Bit Application Table Section
These lock bits control the software security level for accessing the application table section for
software access. The BLBAT bits can only be written to a more strict locking. Resetting the
BLBAT bits is possible by executing a chip erase command.

• Bit 1:0 – LB[1:0]: Lock Bits(1)

These lock bits control the the security level for the flash and EEPROM during external program-
ming. These bits are writable only through an external programming interface. Resetting the lock

Table 4-10. Boot lock bit for the application section.

BLBA[1:0] Group Configuration Description

11 NOLOCK
No Lock - no restrictions for SPM and (E)LPM
accessing the application section.

10 WLOCK
Write lock – SPM is not allowed to write the application
section.

01 RLOCK

Read lock – (E)LPM executing from the boot loader
section is not allowed to read from the application
section.

If the interrupt vectors are placed in the boot loader
section, interrupts are disabled while executing from the
application section.

00 RWLOCK

Read and write lock – SPM is not allowed to write to the
application section, and (E)LPM executing from the boot
loader section is not allowed to read from the
application section.
If the interrupt vectors are placed in the boot loader
section, interrupts are disabled while executing from the
application section.

Table 4-11. Boot lock bit for the application table section.

BLBAT[1:0] Group Configuration Description

11 NOLOCK
No lock – no restrictions for SPM and (E)LPM accessing
the application table section.

10 WLOCK
Write lock – SPM is not allowed to write the application
table

01 RLOCK

Read lock – (E)LPM executing from the boot loader
section is not allowed to read from the application table
section.

If the interrupt vectors are placed in the boot loader
section, interrupts are disabled while executing from the
application section.

00 RWLOCK

Read and write lock – SPM is not allowed to write to the
application table section, and (E)LPM executing from
the boot loader section is not allowed to read from the
application table section.
If the interrupt vectors are placed in the boot loader
section, interrupts are disabled while executing from the
application section.
36
8331B–AVR–03/12

Atmel AVR XMEGA AU
bits is possible by executing a chip erase command. All other access; using the TIF and OCD, is
blocked if any of the Lock Bits are written to 0. These bits do not block any software access to
the memory.

Note: 1. Program the Fuse Bits and Boot Lock Bits before programming the Lock Bits.

4.17 Register Description – Production Signature Row

4.17.1 RCOSC2M – Internal 2MHz Oscillator Calibration register

• Bit 7:0 – RCOSC2M[7:0]: Internal 2MHz Oscillator Calibration Value
This byte contains the oscillator calibration value for the internal 2MHz oscillator. Calibration of
the oscillator is performed during production test of the device. During reset this value is auto-
matically loaded into calibration register B for the 2MHz DFLL. Refer to ”CALB – DFLL
Calibration register B” on page 102 for more details.

4.17.2 RCOSC2MA – Internal 2MHz Oscillator Calibration register

• Bit 7:0 – RCOSC2MA[7:0]: Internal 2MHz Oscillator Calibration Value
This byte contains the oscillator calibration value for the internal 2MHz oscillator. Calibration of
the oscillator is performed during production test of the device. During reset this value is auto-
matically loaded into calibration register A for the 2MHz DFLL. Refer to ”CALA – DFLL
Calibration Register A” on page 101 for more details.

Table 4-12. Lock bit protection mode.

LB[1:0] Group Configuration Description

11 NOLOCK3 No lock – no memory locks enabled.

10 WLOCK
Write lock – programming of the flash and EEPROM is
disabled for the programming interface. Fuse bits are
locked for write from the programming interface.

00 RWLOCK

Read and write lock – programming and
read/verification of the flash and EEPROM are disabled
for the programming interface. The lock bits and fuses
are locked for read and write from the programming
interface.

Bit 7 6 5 4 3 2 1 0

+0x00 RCOSC2M[7:0] RCOSC2M

Read/Write R R R R R R R R

Initial Value x x x x x x x x

Bit 7 6 5 4 3 2 1 0

+0x01 RCOSC2MA[7:0] RCOSC2MA

Read/Write R R R R R R R R

Initial Value x x x x x x x x
37
8331B–AVR–03/12

Atmel AVR XMEGA AU
4.17.3 RCOSC32K – Internal 32.768kHz Oscillator Calibration register

• Bit 7:0 – RCOSC32K[7:0]: Internal 32.768kHz Oscillator Calibration Value
This byte contains the oscillator calibration value for the internal 32.768kHz oscillator. Calibra-
tion of the oscillator is performed during production test of the device. During reset this value is
automatically loaded into the calibration register for the 32.768kHz oscillator. Refer to
”RC32KCAL – 32kHz Oscillator Calibration register” on page 99 for more details.

4.17.4 RCOSC32M – Internal 32MHz Oscillator Calibration register

• Bit 7:0 – RCOSC32M[7:0]: Internal 32MHz Oscillator Calibration Value
This byte contains the oscillator calibration value for the internal 32MHz oscillator. Calibration of
the oscillator is performed during production test of the device. During reset this value is auto-
matically loaded into calibration register B for the 32MHz DFLL. Refer to ”CALB – DFLL
Calibration register B” on page 102 for more details.

4.17.5 RCOSC32MA – Internal 32MHz RC Oscillator Calibration register

• Bit 7:0 – RCOSC32MA[7:0]: Internal 32MHz Oscillator Calibration Value
This byte contains the oscillator calibration value for the internal 32MHz oscillator. Calibration of
the oscillator is performed during production test of the device. During reset this value is auto-
matically loaded into calibration register A for the 32MHz DFLL. Refer to ”CALA – DFLL
Calibration Register A” on page 101 for more details.

4.17.6 LOTNUM0 – Lot Number register 0
LOTNUM0, LOTNUM1, LOTNUM2, LOTNUM3, LOTNUM4 and LOTNUM5 contain the lot num-
ber for each device. Together with the wafer number and wafer coordinates this gives a serial
number for the device.

Bit 7 6 5 4 3 2 1 0

+0x02 RCOSC32K[7:0] RCOSC32K

Read/Write R R R R R R R R

Initial Value x x x x x x x x

Bit 7 6 5 4 3 2 1 0

+0x03 RCOSC32M[7:0] RCOSC32M

Read/Write R R R R R R R R

Initial Value x x x x x x x x

Bit 7 6 5 4 3 2 1 0

+0x04 RCOSC32MA[7:0] RCOSC32MA

Read/Write R R R R R R R R

Initial Value x x x x x x x x
38
8331B–AVR–03/12

Atmel AVR XMEGA AU
• Bit 7:0 – LOTNUM0[7:0]: Lot Number Byte 0
This byte contains byte 0 of the lot number for the device.

4.17.7 LOTNUM1 – Lot Number register 1

• Bit 7:0 – LOTNUM1[7:0]: Lot Number Byte 1
This byte contains byte 1 of the lot number for the device.

4.17.8 LOTNUM2 – Lot Number Register 2

• Bit 7:0 – LOTNUM2[7:0]: Lot Number Byte 2
This byte contains byte 2 of the lot number for the device.

4.17.9 LOTNUM3- Lot Number register 3

• Bit 7:0 – LOTNUM3[7:0]: Lot Number Byte 3
This byte contains byte 3 of the lot number for the device.

Bit 7 6 5 4 3 2 1 0

+0x08 LOTNUM0[7:0] LOTNUM0

Read/Write R R R R R R R R

Initial Value x x x x x x x x

Bit 7 6 5 4 3 2 1 0

+0x09 LOTNUM1[7:0] LOTNUM1

Read/Write R R R R R R R R

Initial Value x x x x x x x x

Bit 7 6 5 4 3 2 1 0

+0x0A LOTNUM2[7:0] LOTNUM2

Read/Write R R R R R R R R

Initial Value x x x x x x x x

Bit 7 6 5 4 3 2 1 0

+0x0B LOTNUM3[7:0] LOTNUM3

Read/Write R R R R R R R R

Initial Value x x x x x x x x
39
8331B–AVR–03/12

Atmel AVR XMEGA AU
4.17.10 LOTNUM4 – Lot Number register 4

• Bit 7:0 – LOTNUM4[7:0]: Lot Number Byte 4
This byte contains byte 4 of the lot number for the device.

4.17.11 LOTNUM5 – Lot Number register 5

• Bit 7:0 – LOTNUM5[7:0]: Lot Number Byte 5
This byte contains byte 5 of the lot number for the device.

4.17.12 WAFNUM – Wafer Number register

• Bit 7:0 – WAFNUM[7:0]: Wafer Number
This byte contains the wafer number for each device. Together with the lot number and wafer
coordinates this gives a serial number for the device.

4.17.13 COORDX0 – Wafer Coordinate X register 0
COORDX0, COORDX1, COORDY0 and COORDY1 contain the wafer X and Y coordinates for
each device. Together with the lot number and wafer number this gives a serial number for each
device.

• Bit 7:0 – COORDX0[7:0]: Wafer Coordinate X Byte 0
This byte contains byte 0 of wafer coordinate X for the device.

Bit 7 6 5 4 3 2 1 0

+0x0C LOTNUM4[7:0] LOTNUM4

Read/Write R R R R R R R R

Initial Value x x x x x x x x

Bit 7 6 5 4 3 2 1 0

+0x0D LOTNUM5[7:0] LOTNUM5

Read/Write R R R R R R R R

Initial Value x x x x x x x x

Bit 7 6 5 4 3 2 1 0

+0x10 WAFNUM[7:0] WAFNUM

Read/Write R R R R R R R R

Initial Value 0 0 0 x x x x x

Bit 7 6 5 4 3 2 1 0

+0x12 COORDX0[7:0] COORDX0

Read/Write R R R R R R R R

Initial Value x x x x x x x x
40
8331B–AVR–03/12

Atmel AVR XMEGA AU
4.17.14 COORDX1 – Wafer Coordinate X register 1

• Bit 7:0 – COORDX0[7:0]: Wafer Coordinate X Byte 1
This byte contains byte 1 of wafer coordinate X for the device.

4.17.15 COORDY0 – Wafer Coordinate Y register 0

• Bit 7:0 – COORDY0[7:0]: Wafer Coordinate Y Byte 0
This byte contains byte 0 of wafer coordinate Y for the device.

4.17.16 COORDY1 – Wafer Coordinate Y register 1

• Bit 7:0 – COORDY1[7:0]: Wafer Coordinate Y Byte 1
This byte contains byte 1 of wafer coordinate Y for the device

4.17.17 USBCAL0 – USB Calibration register 0
USBCAL0 and USBCAL1 contain the calibration value for the USB pins. Calibration is done dur-
ing production to enable operation without requiring external components on the USB lines for
the device. The calibration bytes are not loaded automatically into the USB calibration registers,
so this must be done from software.

• Bit 7:0 – USBCAL0[7:0]: USB Pad Calibration Register 0
This byte contains byte 0 of the USB pin calibration data, and must be loaded into the USB
CALL register.

Bit 7 6 5 4 3 2 1 0

+0x13 COORDX1[7:0] COORDX1

Read/Write R R R R R R R R

Initial Value x x x x x x x x

Bit 7 6 5 4 3 2 1 0

+0x14 COORDY0[7:0] COORDY0

Read/Write R R R R R R R R

Initial Value x x x x x x x x

Bit 7 6 5 4 3 2 1 0

+0x15 COORDY1[7:0] COORDY1

Read/Write R R R R R R R R

Initial Value x x x x x x x x

Bit 7 6 5 4 3 2 1 0

+0x1A USBCAL0[7:0] USBCAL0

Read/Write R R R R R R R R

Initial Value x x x x x x x x
41
8331B–AVR–03/12

Atmel AVR XMEGA AU
4.17.18 USBCAL1 – USB Pad Calibration register 1

• Bit 7:0 – USBCAL1[7:0]: USB Pad Calibration Register 1
This byte contains byte 1 of the USB pin calibration data, and must be loaded into the USB
CALH register.

4.17.19 RCOSC48M – USB RCOSC Calibration

• Bit 7:0 – RCOSC48M[7:0]: 48MHz RSCOSC Calibration
This byte contains a 48MHz calibration value for the internal 32MHz oscillator. When this cali-
bration value is written to calibration register B for the 32MHz DFLL, the oscillator is calibrated to
48MHz to enable full-speed USB operation from internal oscillator.

Note: The COMP2 and COMP1 registers inside the DFLL32M must be set to B71B.

4.17.20 ADCACAL0 – ADCA Calibration register 0
ADCACAL0 and ADCACAL1 contain the calibration value for the analog to digital converter A
(ADCA). Calibration is done during production test of the device. The calibration bytes are not
loaded automatically into the ADC calibration registers, so this must be done from software.

• Bit 7:0 – ADCACAL0[7:0]: ADCA Calibration Byte 0
This byte contains byte 0 of the ADCA calibration data, and must be loaded into the ADCA CALL
register.

4.17.21 ADCACAL1 – ADCA Calibration register 1

Bit 7 6 5 4 3 2 1 0

+0x1B USBCAL1[7:0] USBCAL1

Read/Write R R R R R R R R

Initial Value x x x x x x x x

Bit 7 6 5 4 3 2 1 0

+0x1C RCOSC48M[7:0] RCOSC48M

Read/Write R R R R R R R R

Initial Value x x x x x x x x

Bit 7 6 5 4 3 2 1 0

+0x20 ADCACAL0[7:0] ADCACAL0

Read/Write R R R R R R R R

Initial Value x x x x x x x x

Bit 7 6 5 4 3 2 1 0

+0x21 ADCACAL1[7:0] ADCACAL1

Read/Write R R R R R R R R

Initial Value x x x x x x x x
42
8331B–AVR–03/12

Atmel AVR XMEGA AU
• Bit 7:0 – ADCACAL1[7:0]: ADCA Calibration Byte 1
This byte contains byte 1 of the ADCA calibration data, and must be loaded into the ADCA
CALH register.

4.17.22 ADCBCAL0 – ADCB Calibration register 0
ADCBCAL0 and ADCBCAL1 contains the calibration value for the analog to digital converter
B(ADCB). Calibration is done during production test of the device. The calibration bytes are not
loaded automatically into the ADC calibration registers, so this must be done from software.

• Bit 7:0 – ADCBCAL0[7:0]: ADCB Calibration Byte 0
This byte contains byte 0 of the ADCB calibration data, and must be loaded into the ADCB CALL
register.

4.17.23 ADCBCAL1 – ADCB Calibration register 1

• Bit 7:0 – ADCBCAL0[7:0]: ADCB Calibration Byte 1
This byte contains byte 1 of the ADCB calibration data, and must be loaded into the ADCB
CALH register.

4.17.24 TEMPSENSE0 – Temperature Sensor Calibration register 0
TEMPSENSE0 and TEMPSENSE1 contain the 12-bit ADCA value from a temperature measure-
ment done with the internal temperature sensor. The measurement is done in production test at
85°C and can be used for single- or multi-point temperature sensor calibration.

• Bit 7:0 – TEMPSENSE0[7:0]: Temperature Sensor Calibration Byte 0
This byte contains the byte 0 of the temperature measurement.

Bit 7 6 5 4 3 2 1 0

+0x24 ADCBCAL0[7:0] ADCBCAL0

Read/Write R R R R R R R R

Initial Value x x x x x x x x

Bit 7 6 5 4 3 2 1 0

+0x25 ADCBCAL1[7:0] ADCBCAL1

Read/Write R R R R R R R R

Initial Value x x x x x x x x

Bit 7 6 5 4 3 2 1 0

+0x2E TEMPSENSE0[7:0] TEMPSENSE0

Read/Write R R R R R R R R

Initial Value x x x x x x x x
43
8331B–AVR–03/12

Atmel AVR XMEGA AU
4.17.25 TEMPSENSE1 – Temperature Sensor Calibration register 1

• Bit 7:0 – TEMPSENSE1[7:0]: Temperature Sensor Calibration Byte 1
This byte contains byte 1 of the temperature measurement.

4.17.26 DACA0OFFCAL – DACA Offset Calibration register

• Bit 7:0 – DACA0OFFCAL[7:0]: DACA0 Offset Calibration Byte
This byte contains the offset calibration value for channel 0 in the digital to analog converter A
(DACA). Calibration is done during production test of the device. The calibration byte is not
loaded automatically into the DAC channel 0 offset calibration register, so this must be done
from software.

4.17.27 DACA0GAINCAL – DACA Gain Calibration register

• Bit 7:0 – DACA0GAINCAL[7:0]: DACA0 Gain Calibration Byte
This byte contains the gain calibration value for channel 0 in the digital to analog converter A
(DACA). Calibration is done during production test of the device. The calibration byte is not
loaded automatically into the DAC gain calibration register, so this must be done from software.

4.17.28 DACB0OFFCAL – DACB Offset Calibration register

• Bit 7:0 – DACB0OFFCAL[7:0]: DACB0 Offset Calibration Byte
This byte contains the offset calibration value for channel 0 in the digital to analog converter B
(DACB). Calibration is done during production test of the device. The calibration byte is not

Bit 7 6 5 4 3 2 1 0

+0x2F TEMPSENSE1[7:0] TEMPSENSE1

Read/Write R R R R R R R R

Initial Value 0 0 0 0 x x x x

Bit 7 6 5 4 3 2 1 0

+0x30 DACA0OFFCAL[7:0] DACA0OFFCAL

Read/Write R R R R R R R R

Initial Value 0 0 0 0 x x x x

Bit 7 6 5 4 3 2 1 0

+0x31 DACA0GAINCAL[7:0] DACA0GAINCAL

Read/Write R R R R R R R R

Initial Value 0 0 0 0 x x x x

Bit 7 6 5 4 3 2 1 0

+0x32 DACB0OFFCAL[7:0] DACB0OFFCAL

Read/Write R R R R R R R R

Initial Value 0 0 0 0 x x x x
44
8331B–AVR–03/12

Atmel AVR XMEGA AU
loaded automatically into the DAC channel 0 offset calibration register, so this must be done
from software.

4.17.29 DACB0GAINCAL – DACB Gain Calibration register

• Bit 7:0 – DACB0GAINCAL[7:0]: DACB0 Gain Calibration Byte
This byte contains the gain calibration value for channel 0 in the digital to analog converter B
(DACB). Calibration is done during production test of the device. The calibration byte is not
loaded automatically into the DAC channel 0 gain calibration register, so this must be done from
software.

4.17.30 DACA1OFFCAL – DACA Offset Calibration register

• Bit 7:0 – DACA1OFFCAL[7:0]: DACA1 Offset Calibration Byte
This byte contains the offset calibration value for channel 1 in the digital to analog converter A
(DACA). Calibration is done during production test of the device. The calibration byte is not
loaded automatically into the DAC channel 1 offset calibration register, so this must be done
from software.

4.17.31 DACA1GAINCAL – DACA Gain Calibration register

• Bit 7:0 – DACA1GAINCAL[7:0]: DACA1 Gain Calibration Byte
This byte contains the gain calibration value for channel 1 in the digital to analog converter A
(DACA). Calibration is done during production test of the device. The calibration byte is not
loaded automatically into the DAC channel 1 gain calibration register, so this must be done from
software.

Bit 7 6 5 4 3 2 1 0

+0x33 DACB0GAINCAL[7:0] DACB0GAINCAL

Read/Write R R R R R R R R

Initial Value 0 0 0 0 x x x x

Bit 7 6 5 4 3 2 1 0

+0x34 DACA1OFFCAL[7:0] DACA1OFFCAL

Read/Write R R R R R R R R

Initial Value 0 0 0 0 x x x x

Bit 7 6 5 4 3 2 1 0

+0x35 DACA1GAINCAL[7:0] DACA1GAINCAL

Read/Write R R R R R R R R

Initial Value 0 0 0 0 x x x x
45
8331B–AVR–03/12

Atmel AVR XMEGA AU
4.17.32 DACB1OFFCAL – DACB Offset Calibration register

• Bit 7:0 – DACB1OFFCAL[7:0]: DACB1 Offset Calibration Byte
This byte contains the offset calibration value for channel 1 in the digital to analog converter B
(DACB). Calibration is done during production test of the device. The calibration byte is not
loaded automatically into the DAC channel 1 offset calibration register, so this must be done
from software.

4.17.33 DACB1GAINCAL – DACB Gain Calibration register

• Bit 7:0 – DACB1GAINCAL[7:0]: DACB1 Gain Calibration Byte
This byte contains the gain calibration value for channel 1 in the digital to analog converter B
(DACB). Calibration is done during production test of the device. The calibration byte is not
loaded automatically into the DAC channel 1 gain calibration register, so this must be done from
software.

4.18 Register Description – General Purpose I/O Memory

4.18.1 GPIORn – General Purpose I/O register n

These are general purpose register that can be used to store data such as global variables and
flags in the bit-accessible I/O memory space.

4.19 Register Description – External Memory
Refer to ”EBI – External Bus Interface” on page 335.

Bit 7 6 5 4 3 2 1 0

+0x36 DACB1OFFCAL[7:0] DACB1OFFCAL

Read/Write R R R R R R R R

Initial Value 0 0 0 0 x x x x

Bit 7 6 5 4 3 2 1 0

+0x37 DACB1GAINCAL[7:0] DACB1GAINCAL

Read/Write R R R R R R R R

Initial Value 0 0 0 0 x x x x

Bit 7 6 5 4 3 2 1 0

+n GPIORn[7:0] GPIORn

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
46
8331B–AVR–03/12

Atmel AVR XMEGA AU
4.20 Register Descriptions – MCU Control

4.20.1 DEVID0 – Device ID register 0
DEVID0, DEVID1 and DEVID2 contain the byte identification that identifies each microcontroller
device type. For details on the actual ID, refer to the device datasheet.

• Bit 7:0 – DEVID0[7:0]: Device ID Byte 0
Byte 0 of the device ID. This byte will always be read as 0x1E. This indicates that the device is
manufactured by Atmel.

4.20.2 DEVID1 – Device ID register 1

• Bit 7:0 – DEVID[7:0]: Device ID Byte 1
Byte 1 of the device ID indicates the flash size of the device.

4.20.3 DEVID2 – Device ID register 2

• Bit 7:0 – DEVID2[7:0]: Device ID Byte 2
Byte 2 of the device ID indicates the device number.

4.20.4 REVID – Revision ID

• Bit 7:4 – Reserved
These bits are unused and reserved for future use.

Bit 7 6 5 4 3 2 1 0

+0x00 DEVID0[7:0] DEVID0

Read/Write R R R R R R R R

Initial Value 0 0 0 1 1 1 1 0

Bit 7 6 5 4 3 2 1 0

+0x01 DEVID1[7:0] DEVID1

Read/Write R R R R R R R R

Initial Value 1/0 1/0 1/0 1/0 1/0 1/0 1/0 1/0

Bit 7 6 5 4 3 2 1 0

+0x02 DEVID2[7:0] DEVID2

Read/Write R R R R R R R R

Initial Value 1/0 1/0 1/0 1/0 1/0 1/0 1/0 1/0

Bit 7 6 5 4 3 2 1 0

+0x03 – – – – REVID[3:0] REVID

Read/Write R R R R R R R R

Initial Value 0 0 0 0 1/0 1/0 1/0 1/0
47
8331B–AVR–03/12

Atmel AVR XMEGA AU
• Bit 3:0 – REVID[3:0]: Revision ID
These bits contains the device revision. 0 = A, 1= B and so on.

4.20.5 JTAGUID – JTAG User ID register

• Bit 7:0 – JTAGUID[7:0]: JTAG User ID
The JTAGUID can be used to identify two devices with identical device ID in a JTAG scan chain.
The JTAGUID will automatically be loaded from flash and placed in these registers.

4.20.6 MCUCR – Control register

• Bit 7:1 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

• Bit 0 – JTAGD: JTAG Disable
Setting this bit will disable the JTAG interface. This bit is protected by the configuration change
protection mechanism. For details refer to ”Configuration Change Protection” on page 13.

4.20.7 ANAINIT – Analog Initialization register

• Bit 7:4 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

• Bit 3:2 / 1:0 – STARTUPDLYx
Setting these bits enables sequential start of internal components used for the ADC, DAC, and
analog comparator with main input/output connected to that port. When this is done, the internal
components such as voltage reference and bias currents are started sequentially when the mod-

Bit 7 6 5 4 3 2 1 0

+0x04 JTAGUID[7:0] JTAGUID

Read/Write R R R R R R R R

Initial Value 1/0 1/0 1/0 1/0 1/0 1/0 1/0 1/0

Bit 7 6 5 4 3 2 1 0

+0x06 – – – – – – – JTAGD MCUCR

Read/Write R R R R R R R R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x07 – – – – STARTUPDLYB[1:0] STARTUPDLYA[1:0] ANAINIT

Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
48
8331B–AVR–03/12

Atmel AVR XMEGA AU
ule is enabled. This reduces the peak current consumption during startup of the module. For
maximum effect the start-up delay should be set so that it is larger than 0.5µs.

4.20.8 EVSYSLOCK – Event System Lock register

• Bit 7:5 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

• Bit 4 – EVSYS1LOCK:
Setting this bit will lock all registers in the event system related to event channels 4 to 7 for fur-
ther modification. The following registers in the event system are locked: CH4MUX, CH4CTRL,
CH5MUX, CH5CTRL, CH6MUX, CH6CTRL, CH7MUX, CH7CTRL. This bit is protected by the
configuration change protection mechanism. For details refer to ”Configuration Change Protec-
tion” on page 13.

• Bit 3:1 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

• Bit 0 – EVSYS0LOCK:
Setting this bit will lock all registers in the event system related to event channels 0 to 3 for fur-
ther modification. The following registers in the event system are locked: CH0MUX, CH0CTRL,
CH1MUX, CH1CTRL, CH2MUX, CH2CTRL, CH3MUX, CH3CTRL. This bit is protected by the
configuration change protection mechanism. For details refer to ”Configuration Change Protec-
tion” on page 13.

4.20.9 AWEXLOCK – Advanced Waveform Extension Lock register

Table 4-13. Analog startup delay.

STARTUPDLYx Group Configuration Description

00 NONE Direct startup

11 2CLK 2 * CLKPER

10 8CLK 8 * CLKPER

11 32CLK 32 * CLKPER

Bit 7 6 5 4 3 2 1 0

+0x08 – – – EVSYS1LOCK – – – EVSYS0LOCK EVSYSLOCK

Read/Write R R R R/W R R R R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x09 – – – – – AWEXELOCK – AWEXCLOCK AWEXLOCK

Read/Write R R R R R R/W R R/W

Initial Value 0 0 0 0 0 0 0 0
49
8331B–AVR–03/12

Atmel AVR XMEGA AU
• Bit 7:3 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

• Bit 2 – AWEXELOCK: Advanced Waveform Extension Lock for TCE0
Setting this bit will lock all registers in the AWEXE module for timer/counter E0 for further modifi-
cation. This bit is protected by the configuration change protection mechanism. For details refer
to ”Configuration Change Protection” on page 13.

• Bit 1 – Reserved
This bit is unused and reserved for future use. For compatibility with future devices, always write
this bit to zero when this register is written.

• Bit 0 – AWEXCLOCK: Advanced Waveform Extension Lock for TCC0
Setting this bit will lock all registers in the AWEXC module for timer/counter C0 for further modi-
fication. This bit is protected by the configuration change protection mechanism. For details refer
to ”Configuration Change Protection” on page 13.
50
8331B–AVR–03/12

Atmel AVR XMEGA AU
4.21 Register Summary - NVM Controller

4.22 Register Summary - Fuses and Lockits

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page
+0x00 ADDR0 Address Byte 0 25

+0x01 ADDR1 Address Byte 1 25

+0x02 ADDR2 Address Byte 2 25

+0x03 Reserved – – – – – – – –

+0x04 DATA0 Data Byte 0 26

+0x05 DATA1 Data Byte 1 26

+0x06 DATA2 Data Byte 2 26

+0x07 Reserved – – – – – – – –

+0x08 Reserved – – – – – – – –

+0x09 Reserved – – – – – – – –

+0x0A CMD – CMD[6:0] 26

+0x0B CTRLA – – – – – – – CMDEX 27

+0x0C CTRLB – – – – EEMAPEN FPRM EPRM SPMLOCK 27

+0x0D INTCTRL – – – – SPMLVL[1:0] EELVL[1:0] 28

+0x0E Reserved – – – – – – – –

+0x0F STATUS NVMBUSY FBUSY – – – – EELOAD FLOAD 28

+0x10 LOCKBITS BLBB[1:0] BLBA[1:0] BLBAT[1:0] LB[1:0] 29

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page
+0x00 FUSEBYTE0 JTAGUID 30

+0x01 FUSEBYTE1 WDWPER3:0] WDPER[3:0] 30

+0x02 FUSEBYTE2 – BOOTRST TOSCSEL – – – BODPD[1:0] 30

+0x03 Reserved – – – – – – – –

+0x04 FUSEBYTE4 – – – RSTDISBL STARTUPTIME[1:0] WDLOCK JTAGEN 31

+0x05 FUSEBYTE5 – – BODACT[1:0] EESAVE BODLEVEL[2:0] 32

+0x06 Reserved – – – – – – – –

+0x07 LOCKBITS BLBB[1:0] BLBA[1:0] BLBAT[1:0] LB[1:0] 34
51
8331B–AVR–03/12

Atmel AVR XMEGA AU
4.23 Register Summary - Production Signature Row
Address Auto Load Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page

+0x00 YES RCOSC2M RCOSC2M[7:0] 38

+0x01 YES RCOSC2MA RCOSC2MA[7:0] 38

+0x02 YES RCOSC32K RCOSC32K[7:0] 38

+0x03 YES RCOSC32M RCOSC32M[7:0] 38

+0x04 YES RCOSC32MA RCOSC32MA[7:0] 38

+0x05 Reserved – – – – – – – –

+0x06 Reserved – – – – – – – –

+0x07 Reserved – – – – – – – –

+0x08 NO LOTNUM0 LOTNUM0[7:0] 38

+0x09 NO LOTNUM1 LOTNUM1[7:0] 39

+0x0A NO LOTNUM2 LOTNUM2[7:0] 39

+0x0B NO LOTNUM3 LOTNUM3[7:0] 39

+0x0C NO LOTNUM4 LOTNUM4[7:0] 40

+0x0D NO LOTNUM5 LOTNUM5[7:0] 40

+0x0E Reserved – – – – – – – –

+0x0F Reserved – – – – – – – –

+0x10 NO WAFNUM WAFNUM[7:0] 38

+0x11 Reserved – – – – – – – –

+0x12 NO COORDX0 COORDX0[7:0] 40

+0x13 NO COORDX1 COORDX1[7:0] 41

+0x14 NO COORDY0 COORDY0[7:0] 41

+0x15 NO COORDY1 COORDY1[7:0] 41

+0x16 Reserved – – – – – – – –

+0x17 Reserved – – – – – – – –

+0x18 Reserved – – – – – – – –

+0x19 Reserved – – – – – – – –

+0x1A USBCAL0 USBCAL0[7:0] 41

+0x1B USBCAL1 USBCAL1[7:0] 42

+0x1C RCOSC48M RCOSC48M[7:0] 42

+0x1D Reserved – – – – – – – –

+0x0E Reserved – – – – – – – –

+0x1E Reserved – – – – – – – –

+0x20 NO ADCACAL0 ADCACAL0[7:0] 42

+0x21 NO ADCACAL1 ADCACAL1{7:0] 42

+0x22 Reserved – – – – – – – –

+0x23 Reserved – – – – – – – –

+0x24 NO ADCBCAL0 ADCBCAL0[7:0] 43

+0x25 NO ADCBCAL1 ADCBCAL1[7:0] 43

+0x26 Reserved – – – – – – – –

+0x27 Reserved – – – – – – – –

+0x28 Reserved – – – – – – – –

+0x29 Reserved – – – – – – – –

+0x2A Reserved – – – – – – – –

+0x2B Reserved – – – – – – – –

+0x2C Reserved – – – – – – – –

+0x2D Reserved – – – – – – – –

+0x2E NO TEMPSENSE0 TEMPSENSE0[7:0] 43

+0x2F NO TEMPSENSE1 – – – – TEMPSENSE1[11:8] 44

+0x30 NO DACA0OFFCAL DACA0OFFCAL[7:0] 44

+0x31 NO DACA0GAINCAL DACA0GAINCAL[7:0] 44

+0x32 NO DACB0OFFCAL DACB0OFFCAL[7:0] 44

+0x33 NO DACB0GAINCAL DACB0GAINCAL[7:0] 45

+0x34 NO DACA1OFFCAL DACA1OFFCAL[7:0] 45

+0x35 NO DACA1GAINCAL DACA1GAINCAL[7:0] 45

+0x36 NO DACB1OFFCAL DACB1OFFCAL[7:0] 46

+0x37 NO DACB1GAINCAL DACB1GAINCAL[7:0] 46

+0x38 Reserved – – – – – – – –

+0x39 Reserved – – – – – – – –

0x3A Reserved – – – – – – – –

+0x3B Reserved – – – – – – – –

+0x3C Reserved – – – – – – – –

+0x3D Reserved – – – – – – – –

+0x3E Reserved – – – – – – – –
52
8331B–AVR–03/12

Atmel AVR XMEGA AU
4.24 Register Summary – General Purpose I/O Registers

4.25 Register Summary – MCU Control

4.26 Interrupt Vector Summary – NVM Controller

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page
+0x00 GPIOR0 GPIOR[7:0] 46

+0x01 GPIOR1 GPIOR[7:0] 46

+0x02 GPIOR2 GPIOR[7:0] 46

+0x03 GPIOR3 GPIOR[7:0] 46

+0x04 GPIOR4 GPIOR[7:0] 46

+0x05 GPIOR5 GPIOR[7:0] 46

+0x06 GPIOR6 GPIOR[7:0] 46

+0x07 GPIOR7 GPIOR[7:0] 46

+0x08 GPIOR8 GPIOR[7:0] 46

+0x09 GPIOR9 GPIOR[7:0] 46

+0x0A GPIOR10 GPIOR[7:0] 46

+0x0B GPIOR11 GPIOR[7:0] 46

+0x0C GPIOR12 GPIOR[7:0] 46

+0x0D GPIOR13 GPIOR[7:0] 46

+0x0E GPIOR14 GPIOR[7:0] 46

+0x0F GPIOR15 GPIOR[7:0] 46

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page
+0x00 DEVID0 DEVID0[7:0] 47

+0x01 DEVID1 DEVID1[7:0] 47

+0x02 DEVID2 DEVID2[7:0] 47

+0x03 REVID – – – – REVID[3:0] 47

+0x04 JTAGUID JTAGUID[7:0] 48

+0x05 Reserved – – – – – – – –

+0x06 MCUCR – – – – – – – JTAGD 48

+0x07 ANAINIT – – – – STARTUPDLYB[1:0] STARTUPDLYA[1:0] 48

+0x08 EVSYSLOCK – – – EVSYS1LOC – – – EVSYS0LOCK 49

+0x09 AWEXLOCK – – – – – AWEXELOCK – AWEXCLOCK 49

+0x0A Reserved – – – – – – – –

+0x0B Reserved – – – – – – – –

Table 4-14. NVM interrupt vectors and their word offset address from the NVM controller interrupt base.

Offset Source Interrupt Description

0x00 EE_vect Nonvolatile memory EEPROM interrupt vector

0x02 SPM_vect Nonvolatile memory SPM interrupt vector
53
8331B–AVR–03/12

Atmel AVR XMEGA AU
5. DMAC - Direct Memory Access Controller

5.1 Features
• Allows high speed data transfers with minimal CPU intervention

– from data memory to data memory
– from data memory to peripheral
– from peripheral to data memory
– from peripheral to peripheral

• Four DMA channels with separate
– transfer triggers
– interrupt vectors
– addressing modes

• Programmable channel priority
• From 1 byte to 16MB of data in a single transaction

– Up to 64KB block transfers with repeat
– 1, 2, 4, or 8 byte burst transfers

• Multiple addressing modes
– Static
– Incremental
– Decremental

• Optional reload of source and destination addresses at the end of each
– Burst
– Block
– Transaction

• Optional interrupt on end of transaction
• Optional connection to CRC generator for CRC on DMA data

5.2 Overview
The four-channel direct memory access (DMA) controller can transfer data between memories
and peripherals, and thus offload these tasks from the CPU. It enables high data transfer rates
with minimum CPU intervention, and frees up CPU time. The four DMA channels enable up to
four independent and parallel transfers.

The DMA controller can move data between SRAM and peripherals, between SRAM locations
and directly between peripheral registers. With access to all peripherals, the DMA controller can
handle automatic transfer of data to/from communication modules. The DMA controller can also
read from memory mapped EEPROM.

Data transfers are done in continuous bursts of 1, 2, 4, or 8 bytes. They build block transfers of
configurable size from 1 byte to 64KB. A repeat counter can be used to repeat each block trans-
fer for single transactions up to 16MB. Source and destination addressing can be static,
incremental or decremental. Automatic reload of source and/or destination addresses can be
done after each burst or block transfer, or when a transaction is complete. Application software,
peripherals, and events can trigger DMA transfers.

The four DMA channels have individual configuration and control settings. This include source,
destination, transfer triggers, and transaction sizes. They have individual interrupt settings. Inter-
rupt requests can be generated when a transaction is complete or when the DMA controller
detects an error on a DMA channel.

To allow for continuous transfers, two channels can be interlinked so that the second takes over
the transfer when the first is finished, and vice versa.
54
8331B–AVR–03/12

Atmel AVR XMEGA AU
Figure 5-1. DMA Overview.

5.3 DMA Transaction
A complete DMA read and write operation between memories and/or peripherals is called a
DMA transaction. A transaction is done in data blocks, and the size of the transaction (number of
bytes to transfer) is selectable from software and controlled by the block size and repeat counter
settings. Each block transfer is divided into smaller bursts.

5.3.1 Block Transfer and Repeat
The size of the block transfer is set by the block transfer count register, and can be anything
from 1 byte to 64KB.

A repeat counter can be enabled to set a number of repeated block transfers before a transac-
tion is complete. The repeat is from 1 to 255, and an unlimited repeat count can be achieved by
setting the repeat count to zero.

5.3.2 Burst Transfer
Since the AVR CPU and DMA controller use the same data buses, a block transfer is divided
into smaller burst transfers. The burst transfer is selectable to 1, 2, 4, or 8 bytes. This means that
if the DMA acquires the data bus and a transfer request is pending, it will occupy the bus until all
bytes in the burst are transferred.

A bus arbiter controls when the DMA controller and the AVR CPU can use the bus. The CPU
always has priority, and so as long as the CPU requests access to the bus, any pending burst
transfer must wait. The CPU requests bus access when it executes an instruction that writes or
reads data to SRAM, I/O memory, EEPROM or the external bus interface. For more details on
memory access bus arbitration, refer to ”Data Memory” on page 23.

R/W Master port

Arbitration

BUF

Bus
matrix

Arbiter

Read

Write

Slave port

Read /
Write

CTRL

DMA Channel 1

DMA Channel 2

DMA Channel 3

DMA trigger /
Event

DMA Channel 0

SRCADDR
TRFCNT DESTADDR

TRIGSRC

REPCNT

Control Logic

Enable
Burst

CTRLA
CTRLB
55
8331B–AVR–03/12

Atmel AVR XMEGA AU
Figure 5-2. DMA transaction.

5.4 Transfer Triggers
DMA transfers can be started only when a DMA transfer request is detected. A transfer request
can be triggered from software, from an external trigger source (peripheral), or from an event.
There are dedicated source trigger selections for each DMA channel. The available trigger
sources may vary from device to device, depending on the modules or peripherals that exist in
the device. Using a transfer trigger for a module or peripherals that does not exist will have no
effect. For a list of all transfer triggers, refer to ”TRIGSRC – Trigger Source” on page 65.

By default, a trigger starts a block transfer operation. When the block transfer is complete, the
channel is automatically disabled. When enabled again, the channel will wait for the next block
transfer trigger. It is possible to select the trigger to start a burst transfer instead of a block trans-
fer. This is called a single-shot transfer, and for each trigger only one burst is transferred. When
repeat mode is enabled, the next block transfer does not require a transfer trigger. It will start as
soon as the previous block is done.

If the trigger source generates a transfer request during an ongoing transfer, this will be kept
pending, and the transfer can start when the ongoing one is done. Only one pending transfer
can be kept, and so if the trigger source generates more transfer requests when one is already
pending, these will be lost.

5.5 Addressing
The source and destination address for a DMA transfer can either be static or automatically
incremented or decremented, with individual selections for source and destination. When
address increment or decrement is used, the default behaviour is to update the address after
each access. The original source and destination addresses are stored by the DMA controller,
and so the source and destination addresses can be individually configured to be reloaded at
the following points:

• End of each burst transfer

• End of each block transfer

• End of transaction

• Never reloaded

5.6 Priority Between Channels
If several channels request a data transfer at the same time, a priority scheme is available to
determine which channel is allowed to transfer data. Application software can decide whether

Four-byte burst mode Block size: 12 bytes Repeat count: 2

Burst transfer Block transfer

DMA transaction
56
8331B–AVR–03/12

Atmel AVR XMEGA AU
one or more channels should have a fixed priority or if a round robin scheme should be used. A
round robin scheme means that the channel that last transferred data will have the lowest
priority.

5.7 Double Buffering
To allow for continuous transfer, two channels can be interlinked so that the second takes over
the transfer when the first is finished, and vice versa. This leaves time for the application to pro-
cess the data transferred by the first channel, prepare fresh data buffers, and set up the channel
registers again while the second channel is working. This is referred to as double buffering or
chained transfers.

When double buffering is enabled for a channel pair, it is important that the two channels are
configured with the same repeat count. The block sizes need not be equal, but for most applica-
tions they should be, along with the rest of the channel’s operation mode settings.

Note that the double buffering channel pairs are limited to channels 0 and 1 as the first pair and
channels 2 and 3 as the second pair. However, it is possible to have one pair operate in double
buffered mode while the other is left unused or operating independently.

5.8 Transfer Buffers
To avoid unnecessary bus loading when doing data transfer between memories with different
access timing (for example, I/O register and external memory), the DMA controller has a four-
byte buffer. Two bytes will be read from the source address and written to this buffer before a
write to the destination is started.

5.9 Error detection
The DMA controller can detect erroneous operation. Error conditions are detected individually
for each DMA channel, and the error conditions are:

• Write to memory mapped EEPROM locations

• Reading EEPROM when the EEPROM is off (sleep entered)

• DMA controller or a busy channel is disabled in software during a transfer

5.10 Software Reset
Both the DMA controller and a DMA channel can be reset from the user software. When the
DMA controller is reset, all registers associated with the DMA controller, including channels, are
cleared. A software reset can be done only when the DMA controller is disabled.

When a DMA channel is reset, all registers associated with the DMA channel are cleared. A soft-
ware reset can be done only when the DMA channel is disabled.

5.11 Protection
In order to ensure safe operation, some of the channel registers are protected during a transac-
tion. When the DMA channel busy flag (CHnBUSY) is set for a channel, the user can modify only
the following registers and bits:

• CTRL register

• INTFLAGS register

• TEMP registers

• CHEN, CHRST, TRFREQ, and REPEAT bits of the channel CTRL register

• TRIGSRC register
57
8331B–AVR–03/12

Atmel AVR XMEGA AU
5.12 Interrupts
The DMA controller can generate interrupts when an error is detected on a DMA channel or
when a transaction is complete for a DMA channel. Each DMA channel has a separate interrupt
vector, and there are different interrupt flags for error and transaction complete.

If repeat is not enabled, the transaction complete flag is set at the end of the block transfer. If
unlimited repeat is enabled, the transaction complete flag is also set at the end of each block
transfer.
58
8331B–AVR–03/12

Atmel AVR XMEGA AU
5.13 Register Description – DMA Controller

5.13.1 CTRL – Control register

• Bit 7 – ENABLE: Enable
Setting this bit enables the DMA controller. If the DMA controller is enabled and this bit is written
to zero, the ENABLE bit is not cleared before the internal transfer buffer is empty, and the DMA
data transfer is aborted.

• Bit 6 – RESET: Software Reset
Writing a one to RESET will be ignored as long as DMA is enabled (ENABLE = 1). This bit can
be set only when the DMA controller is disabled (ENABLE = 0).

• Bit 5:4 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

• Bit 3:2 – DBUFMODE[1:0]: Double Buffer Mode
These bits enable the double buffer on the different channels according to Table 5-1.

• Bit 1:0 – PRIMODE[1:0]: Channel Priority Mode
These bits determine the internal channel priority according to Table 5-2.

Bit 7 6 5 4 3 2 1 0

+0x00 ENABLE RESET – – DBUFMODE[1:0] PRIMODE[1:0] CTRL

Read/Write R/W R/W R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 5-1. DMA double buffer settings.

DBUFMODE[1:0] Group Configuration Description

00 DISABLED No double buffer enabled

01 CH01 Double buffer enabled on channel0/1

10 CH23 Double buffer enabled on channel2/3

11 CH01CH23 Double buffer enabled on channel0/1 and channel2/3

Table 5-2. DMA channel priority settings.

PRIMODE[1:0] Group Configuration Description

00 RR0123 Round robin

01 CH0RR123 Channel0 > Round robin (channel 1, 2 and 3)

10 CH01RR23 Channel0 > Channel1 > Round robin (channel 2 and 3)

11 CH0123 Channel0 > Channel1 > Channel2 > Channel3
59
8331B–AVR–03/12

Atmel AVR XMEGA AU
5.13.2 INTFLAGS – Interrupt Status register

• Bit 7:4 – CHnERRIF[3:0]: Channel n Error Interrupt Flag
If an error condition is detected on DMA channel n, the CHnERRIF flag will be set. Writing a one
to this bit location will clear the flag.

• Bit 3:0 – CHnTRNFIF[3:0]: Channel n Transaction Complete Interrupt Flag
When a transaction on channel n has been completed, the CHnTRFIF flag will be set. If unlim-
ited repeat count is enabled, this flag is read as one after each block transfer. Writing a one to
this bit location will clear the flag.

5.13.3 STATUS – Status register

• Bit 7:4 – CHnBUSY[3:0]: Channel Busy
When channel n starts a DMA transaction, the CHnBUSY flag will be read as one. This flag is
automatically cleared when the DMA channel is disabled, when the channel n transaction com-
plete interrupt flag is set, or if the DMA channel n error interrupt flag is set.

• Bit 3:0 – CHnPEND[3:0]: Channel Pending
If a block transfer is pending on DMA channel n, the CHnPEND flag will be read as one. This
flag is automatically cleared when the block transfer starts or if the transfer is aborted.

5.13.4 TEMPL – Temporary register Low

• Bit 7:0 – TEMP[7:0]: Temporary register 0
This register is used when reading 16- and 24-bit registers in the DMA controller. Byte 1 of the
16/24-bit register is stored here when it is written by the CPU. Byte 1 of the 16/24-bit register is
stored when byte 0 is read by the CPU. This register can also be read and written from the user
software.

Reading and writing 16- and 24-bit registers requires special attention. For details, refer to
”Accessing 16-bit Registers” on page 13.

Bit 7 6 5 4 3 2 1 0

+0x03 CH3ERRIF CH2ERRIF CH1ERRIF CH0ERRIF CH3TRNFIF CH2TRNFIF CH1TRNFIF CH0TRNFIF INTFLAGS

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x04 CH3BUSY CH2BUSY CH1BUSY CH0BUSY CH3PEND CH2PEND CH1PEND CH0PEND STATUS

Read/Write R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x06 TEMP[7:0] TEMPL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
60
8331B–AVR–03/12

Atmel AVR XMEGA AU
5.13.5 TEMPH – Temporary Register High

• Bit 7:0 – TEMP[15:8]: Temporary Register
This register is used when reading and writing 24-bit registers in the DMA controller. Byte 2 of
the 24-bit register is stored when it is written by the CPU. Byte 2 of the 24-bit register is stored
here when byte 1 is read by the CPU. This register can also be read and written from the user
software.

Reading and writing 24-bit registers requires special attention. For details, refer to ”Accessing
16-bit Registers” on page 13.

5.14 Register Description – DMA Channel

5.14.1 CTRLA – Control register A

• Bit 7 – ENABLE: Channel Enable
Setting this bit enables the DMA channel. This bit is automatically cleared when the transaction
is completed. If the DMA channel is enabled and this bit is written to zero, the CHEN bit is not
cleared until the internal transfer buffer is empty and the DMA transfer is aborted.

• Bit 6 – RESET: Software Reset
Setting this bit will reset the DMA channel. It can only be set when the DMA channel is disabled
(CHEN = 0). Writing a one to this bit will be gnored as long as the channel is enabled (CHEN=1).
This bit is automatically cleared when reset is completed.

• Bit 5 – REPEAT: Repeat Mode
Setting this bit enables the repeat mode. In repeat mode, this bit is cleared by hardware at the
beginning of the last block transfer. The REPCNT register should be configured before setting
the REPEAT bit.

• Bit 4 – TRFREQ: Transfer Request
Setting this bit requests a data transfer on the DMA channel. This bit is automatically cleared at
the beginning of the data transfer. Writing this bit does not have any effect unless the channel is
enabled.

• Bit 3 – Reserved
This bit is unused and reserved for future use. For compatibility with future devices, always write
this bit to zero when this register is written.

Bit 7 6 5 4 3 2 1 0

+0x07 TEMP[15:8] TEMPH

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x00 ENABLE RESET REPEAT TRFREQ – SINGLE BURSTLEN[1:0] CTRLA

Read/Write R/W R/W R/W R/W R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
61
8331B–AVR–03/12

Atmel AVR XMEGA AU
• Bit 2 – SINGLE: Single-Shot Data transfer
Setting this bit enables the single-shot mode. The channel will then do a burst transfer of
BURSTLEN bytes on the transfer trigger. A write to this bit will be ignored while the channel is
enabled.

• Bit 1:0 – BURSTLEN[1:0]: Burst Mode
These bits decide the DMA channel burst mode according to Table 5-3 on page 62. These bits
cannot be changed if the channel is busy.

Table 5-3. DMA channel burst mode.

BURSTLEN[1:0] Group Configuration Description

00 1BYTE 1 byte burst mode

01 2BYTE 2 bytes burst mode

10 4BYTE 4 bytes burst mode

11 8BYTE 8 bytes burst mode

Table 5-4. Summary of triggers, transcation complete flag and channel disable according to
DMA channel configuration.

REPEAT SINGLE REPCNT Trigger Flag Set After Channel Disabled After

0 0 0 Block 1 block 1 block

0 0 1 Block 1 block 1 block

0 0 n > 1 Block 1 block 1 block

0 1 0 BURSTLEN 1 block 1 block

0 1 1 BURSTLEN 1 block 1 block

0 1 n > 1 BURSTLEN 1 block 1 block

1 0 0 Block Each block Each block

1 0 1 Transaction 1 block 1 block

1 0 n > 1 Transaction n blocks n blocks

1 1 0 BURSTLEN Each block Never

1 1 1 BURSTLEN 1 block 1 block

1 1 n > 1 BURSTLEN n blocks n blocks
62
8331B–AVR–03/12

Atmel AVR XMEGA AU
5.14.2 CTRLB – Control register B

• Bit 7 – CHBUSY: Channel Busy
When the DMA channel starts a DMA transaction, the CHBUSY flag will be read as one. This
flag is automatically cleared when the DMA channel is disabled, when the channel transaction
complete interrupt flag is set or when the channel error interrupt flag is set.

• Bit 6 – CHPEND: Channel Pending
If a block transfer is pending on the DMA channel, the CHPEND flag will be read as one. This
flag is automatically cleared when the transfer starts or if the transfer is aborted.

• Bit 5 – ERRIF: Error Interrupt Flag
If an error condition is detected on the DMA channel, the ERRIF flag will be set and the optional
interrupt is generated. Since the DMA channel error interrupt shares the interrupt address with
the DMA channel n transaction complete interrupt, ERRIF will not be cleared when the interrupt
vector is executed. This flag is cleared by writing a one to this location.

• Bit 4 – TRNIF: Channel n Transaction Complete Interrupt Flag
When a transaction on the DMA channel has been completed, the TRNIF flag will be set and the
optional interrupt is generated. When repeat is not enabled, the transaction is complete and
TRNIFR is set after the block transfer. When unlimited repeat is enabled, TRNIF is also set after
each block transfer.

Since the DMA channel transaction n complete interrupt shares the interrupt address with the
DMA channel error interrupt, TRNIF will not be cleared when the interrupt vector is executed.
This flag is cleared by writing a one to this location.

• Bit 3:2 – ERRINTLVL[1:0]: Channel Error Interrupt Level
These bits enable the interrupt for DMA channel transfer errors and select the interrupt level, as
described in ”Interrupts and Programmable Multilevel Interrupt Controller” on page 134. The
enabled interrupt will trigger for the conditions when ERRIF is set.

• Bit 1:0 – TRNINTLVL[1:0]: Channel Transaction Complete Interrupt Level
These bits enable the interrupt for DMA channel transaction completes and select the interrupt
level, as described in ”Interrupts and Programmable Multilevel Interrupt Controller” on page 134.
The enabled interrupt will trigger for the conditions when TRNIF is set.

5.14.3 ADDRCTRL – Address Control register

Bit 7 6 5 4 3 2 1 0

+0x01 CHBUSY CHPEND ERRIF TRNIF ERRINTLVL[1:0] TRNINTLVL[1:0] CTRLB

Read/Write R R R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x02 SRCRELOAD[1:0] SRCDIR[1:0] DESTRELOAD[1:0] DESTDIR[1:0] ADDRCTRL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
63
8331B–AVR–03/12

Atmel AVR XMEGA AU
• Bit 7:6 – SRCRELOAD[1:0]: Channel Source Address Reload
These bits decide the DMA channel source address reload according to Table 5-5. A write to
these bits is ignored while the channel is busy.

• Bit 5:4 – SRCDIR[1:0]: Channel Source Address Mode
These bits decide the DMA channel source address mode according to Table 5-6. These bits
cannot be changed if the channel is busy.

• Bit 3:2 – DESTRELOAD[1:0]: Channel Destination Address Reload
These bits decide the DMA channel destination address reload according to Table 5-7 on page
64. These bits cannot be changed if the channel is busy.

• Bit 1:0 – DESTDIR[1:0]: Channel Destination Address Mode
These bits decide the DMA channel destination address mode according to Table 5-8 on page
65. These bits cannot be changed if the channel is busy.

Table 5-5. DMA channel source address reload settings.

SRCRELOAD[1:0] Group Configuration Description

00 NONE No reload performed.

01 BLOCK
DMA source address register is reloaded with initial
value at end of each block transfer.

10 BURST
DMA source address register is reloaded with initial
value at end of each burst transfer.

11 TRANSACTION
DMA source address register is reloaded with initial
value at end of each transaction.

Table 5-6. DMA channel source address mode settings.

SRCDIR[1:0] Group Configuration Description

00 FIXED Fixed

01 INC Increment

10 DEC Decrement

11 - Reserved

Table 5-7. DMA channel destination address reload settings.

DESTRELOAD[1:0] Group Configuration Description

00 NONE No reload performed.

01 BLOCK
DMA channel destination address register is reloaded
with initial value at end of each block transfer.

10 BURST
DMA channel destination address register is reloaded
with initial value at end of each burst transfer.

11 TRANSACTION
DMA channel destination address register is reloaded
with initial value at end of each transaction.
64
8331B–AVR–03/12

Atmel AVR XMEGA AU
5.14.4 TRIGSRC – Trigger Source

• Bit 7:0 – TRIGSRC[7:0]: Channel Trigger Source Select
These bits select which trigger source is used for triggering a transfer on the DMA channel. A
zero value means that the trigger source is disabled. For each trigger source, the value to put in
the TRIGSRC register is the sum of the module’s or peripheral’s base value and the offset value
for the trigger source in the module or peripheral. Table 5-9 on page 65 shows the base value for
all modules and peripherals. Table 5-10 on page 66 to Table 5-13 on page 67 shows the offset
value for the trigger sources in the different modules and peripheral types. For modules or
peripherals which do not exist for a device, the transfer trigger does not exist. Refer to the device
datasheet for the list of peripherals available.

If the interrupt flag related to the trigger source is cleared or the interrupt level enabled so that an
interrupt is triggered, the DMA request will be lost. Since a DMA request can clear the interrupt
flag, interrupts can be lost.

Note: For most trigger sources, the request is cleared by accessing a register belonging to the periph-
eral with the request. Refer to the different peripheral chapters for how requests are generated
and cleared.

Table 5-8. DMA channel destination address mode settings.

DESTDIR[1:0] Group Configuration Description

00 FIXED Fixed

01 INC Increment

10 DEC Decrement

11 - Reserved

Bit 7 6 5 4 3 2 1 0

+0x03 TRIGSRC[7:0] TRIGSRC

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 5-9. DMA trigger source base values for all modules and peripherals.

TRIGSRC Base Value Group Configuration Description

0x00 OFF Software triggers only

0x01 SYS Event system DMA triggers base value

0x04 AES AES DMA trigger value

0x10 ADCA ADCA DMA triggers base value

0x15 DACA DACA DMA trigger bas

0x20 ADCB ADCB DMA triggers base value

0x25 DACB DACB DMA triggers base value

0x40 TCC0 Timer/counter C0 DMA triggers base value

0x46 TCC1 Timer/counter C1 triggers base value
65
8331B–AVR–03/12

Atmel AVR XMEGA AU
Note:

Notes: 1. For DAC only, channel 0 and 1 exists and can be used as triggers.

2. Channel 4 equals ADC channel 0 to 3 ORed together.

0x4A SPIC SPI C DMA triggers value

0x4B USARTC0 USART C0 DMA triggers base value

0x4E USARTC1 USART C1 DMA triggers base value

0x60 TCD0 Timer/counter D0 DMA triggers base value

0x66 TCD1 Timer/counter D1 triggers base value

0x6A SPID SPI D DMA triggers value

0x6B USARTD0 USART D0 DMA triggers base value

0x6E USARTD1 USART D1 DMA triggers base value

0x80 TCE0 Timer/counter E0 DMA triggers base value

0x86 TCE1 Timer/counter E1 triggers base value

0x8A SPIE SPI E DMA triggers value

0x8B USARTE0 USART E0 DMA triggers base value

0x8E USARTE1 USART E1 DMA triggers base value

0xA0 TCF0 Timer/counter F0 DMA triggers base value

0xA6 TCF1 Timer/counter F1 triggers base value

0xAA SPIF SPI F DMA trigger value

0xAB USARTF0 USART F0 DMA triggers base value

0xAE USARTF1 USART F1 DMA triggers base value

Table 5-10. DMA trigger source offset values for event system triggers.

TRGSRC Offset Value Group Configuration Description

+0x00 CH0 Event channel 0

+0x01 CH1 Event channel 1

+0x02 CH2 Event channel 2

Table 5-11. DMA trigger source offset values for DAC and ADC triggers.

TRGSRC offset value Group Configuration Description

+0x00 CH0 ADC/DAC channel 0

+0x01 CH1 ADC/DAC channel 1

+0x02 CH2(1) ADC channel 2

+0x03 CH3 ADC channel 3

+0x04 CH4(2) ADC channel 0, 1, 2, 3

Table 5-9. DMA trigger source base values for all modules and peripherals. (Continued)

TRIGSRC Base Value Group Configuration Description
66
8331B–AVR–03/12

Atmel AVR XMEGA AU
Note: 1. CC channel C and D triggers are available only for timer/counters 0.

The group configuration is the “base_offset;” for example, TCC1_CCA for the timer/counter C1
CC channel A the transfer trigger.

5.14.5 TRFCNTL – Channel Block Transfer Count register L
The TRFCNTH and TRFCNTL register pair represents the 16-bit value TRFCNT. TRFCNT
defines the number of bytes in a block transfer. The value of TRFCNT is decremented after each
byte read by the DMA channel. When TRFCNT reaches zero, the register is reloaded with the
last value written to it.

• Bit 7:0 – TRFCNT[7:0]: Channel n Block Transfer Count register Low
These bits hold the LSB of the 16-bit block transfer count.

The default value of this register is 0x1. If a user writes 0x0 to this register and fires a DMA trig-
ger, DMA will be doing 0xFFFF transfers.

5.14.6 TRFCNTH – Channel Block Transfer Count register H
Reading and writing 16-bit values requires special attention. For details, refer to ”Accessing 16-
bit Registers” on page 13.

Table 5-12. DMA trigger source offset values for timer/ counter triggers.

TRGSRC Offset Value Group Configuration Description

+0x00 OVF Overflow/underflow

+0x01 ERR Error

+0x02 CCA Compare or capture channel A

+0x03 CCB Compare or capture channel B

+0x04 CCC(1) Compare or capture channel C

+0x05 CCD(1) Compare or capture channel D

Table 5-13. DMA trigger source offset values for USART triggers.

TRGSRC Offset Value Group Configuration Description

0x00 RXC Receive complete

0x01 DRE Data register empty

Bit 7 6 5 4 3 2 1 0

+0x04 TRFCNT[7:0] TRFCNTL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x05 TRFCNT[15:8] TRFCNTH

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
67
8331B–AVR–03/12

Atmel AVR XMEGA AU
• Bit 7:0 – TRFCNT[15:8]: Channel n Block Transfer Count register High
These bits hold the MSB of the 16-bit block transfer count.

The default value of this register is 0x1. If a user writes 0x0 to this register and fires a DMA trig-
ger, DMA will be doing 0xFFFF transfers.

5.14.7 REPCNT – Repeat Counter register

REPCNT counts how many times a block transfer is performed. For each block transfer, this reg-
ister will be decremented.

When repeat mode is enabled (see REPEAT bit in ”ADDRCTRL – Address Control register” on
page 63), this register is used to control when the transaction is complete. The counter is decre-
mented after each block transfer if the DMA has to serve a limited number of repeated block
transfers. When repeat mode is enabled, the channel is disabled when REPCNT reaches zero
and the last block transfer is completed. Unlimited repeat is achieved by setting this register to
zero.

5.14.8 SRCADDR0 – Source Address 0
SRCADDR0, SRCADDR1, and SRCADDR2 represent the 24-bit value SRCADDR, which is the
DMA channel source address. SRCADDR2 is the most significant byte in the register.
SRCADDR may be automatically incremented or decremented based on settings in the SRCDIR
bits in ”ADDRCTRL – Address Control register” on page 63.

• Bit 7:0 – SRCADDR[7:0]: Channel Source Address 0
These bits hold byte 0 of the 24-bit source address.

5.14.9 SRCADDR1 – Channel Source Address 1

• Bit 7:0 – SRCADDR[15:8]: Channel Source Address 1
These bits hold byte 1 of the 24-bit source address.

Bit 7 6 5 4 3 2 1 0

+0x06 REPCNT[7:0] REPCNT

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x08 SRCADDR[7:0] SRCADDR0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x09 SRCADDR[15:8] SRCADDR1

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
68
8331B–AVR–03/12

Atmel AVR XMEGA AU
5.14.10 SRCADDR2 – Channel Source Address 2
Reading and writing 24-bit values require special attention. For details, refer to ”Accessing 24-
and 32-bit Registers” on page 13.

• Bit 7:0 – SRCADDR[23:16]: Channel Source Address 2
These bits hold byte 2 of the 24-bit source address.

5.14.11 DESTADDR0 – Channel Destination Address 0
DESTADDR0, DESTADDR1, and DESTADDR2 represent the 24-bit value DESTADDR, which
is the DMA channel destination address. DESTADDR2 holds the most significant byte in the reg-
ister. DESTADDR may be automatically incremented or decremented based on settings in the
DESTDIR bits in ”ADDRCTRL – Address Control register” on page 63.

• Bit 7:0 – DESTADDR[7:0]: Channel Destination Address 0
These bits hold byte 0 of the 24-bit source address.

5.14.12 DESTADDR1 – Channel Destination Address 1

• Bit 7:0 – DESTADDR[15:8]: Channel Destination Address 1
These bits hold byte 1 of the 24-bit source address.

5.14.13 DESTADDR2 – Channel Destination Address 2
Reading and writing 24-bit values require special attention. For details, refer to ”Accessing 24-
and 32-bit Registers” on page 13.

• Bit 7:0 – DESTADDR[23:16]: Channel Destination Address 2
These bits hold byte 2 of the 24-bit source address.

Bit 7 6 5 4 3 2 1 0

+0x0A SRCADDR[23:16] SRCADDR2

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x0C DESTADDR[7:0] DESTADDR0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x0D DESTADDR[15:8] DESTADDR1

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x0E DESTADDR[23:16] DESTADDR2

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
69
8331B–AVR–03/12

Atmel AVR XMEGA AU
5.15 Register Summary – DMA Controller

5.16 Register Summary – DMA Channel

5.17 DMA Interrupt Vector Summary

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page
+0x00 CTRL ENABLE RESET - - DBUFMODE[1:0] PRIMODE[1:0] 59

+0x01 Reserved – – – – – – – –

+0x02 Reserved – – – – – – – –

+0x03 INTFLAGS CH3ERRIF CH2ERRIF CH1ERRIF CH0ERRIF CH3TRNFIF CH2TRNFIF CH1TRNFIF CH0TRNFIF 60

+0x04 STATUS CH3BUSY CH2BUSY CH1BUSY CH0BUSY CH3PEND CH2PEND CH1PEND CH0PEND 60

+0x05 Reserved – – – – – – – –

+0x06 TEMPL TEMP[7:0] 60

+0x07 TEMPH TEMP[15:8] 61

+0x10 CH0 Offset Offset address for DMA Channel 0

+0x20 CH1 Offset Offset address for DMA Channel 1

+0x30 CH2 Offset Offset address for DMA Channel 2

+0x40 CH3 Offset Offset address for DMA Channel 3

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page
+0x00 CTRLA ENABLE RESET REPEAT TRFREQ - SINGLE BURSTLEN[1:0] 61

+0x01 CTRLB CHBUSY CHPEND ERRIF TRNIF ERRINTLVL[1:0] TRNINTLVL[1:0] 63

+0x02 ADDCTRL SRCRELOAD[1:0] SRCDIR[1:0] DESTRELOAD[1:0] DESTDIR[1:0] 63

+0x03 TRIGSRC TRIGSRC[7:0] 65

+0x04 TRFCNTL TRFCNT[7:0] 67

+0x05 TRFCNTH TRFCNT[15:8] 67

+0x06 REPCNT REPCNT[7:0] 68

+0x07 Reserved – – – – – – – –

+0x08 SRCADDR0 SRCADDR[7:0] 68

+0x09 SRCADDR1 SRCADDR[15:8] 68

+0x0A SRCADDR2 SRCADDR[23:16] 68

+0x0B Reserved – – – – – – – –

+0x0C DESTADDR0 DESTADDR[7:0] 69

+0x0D DESTADDR1 DESTADDR[15:8] 69

+0x0E DESTADDR2 DESTADDR[23:16] 69

+0x0F Reserved – – – – – – – –

Table 5-14. DMA interrupt vectors and their word offset addresses from the DMA controller interrupt base.

Offset Source Interrupt Description

0x00 CH0_vect DMA controller channel 0 interrupt vector

0x02 CH1_vect DMA controller channel 1 interrupt vector

0x04 CH2_vect DMA controller channel 2 interrupt vector

0x06 CH3_vect DMA controller channel 3 interrupt vector
70
8331B–AVR–03/12

Atmel AVR XMEGA AU
6. Event System

6.1 Features
• System for direct peripheral-to-peripheral communication and signaling
• Peripherals can directly send, receive, and react to peripheral events

– CPU and DMA controller independent operation
– 100% predictable signal timing
– Short and guaranteed response time

• Eight event channels for up to eight different and parallel signal routings and configurations
• Events can be sent and/or used by most peripherals, clock system, and software
• Additional functions include

– Quadrature decoders
– Digital filtering of I/O pin state

• Works in active mode and idle sleep mode

6.2 Overview
The event system enables direct peripheral-to-peripheral communication and signaling. It allows
a change in one peripheral’s state to automatically trigger actions in other peripherals. It is
designed to provide a predictable system for short and predictable response times between
peripherals. It allows for autonomous peripheral control and interaction without the use of inter-
rupts, CPU, or DMA controller resources, and is thus a powerful tool for reducing the complexity,
size and execution time of application code. It also allows for synchronized timing of actions in
several peripheral modules.

A change in a peripheral’s state is referred to as an event, and usually corresponds to the
peripheral’s interrupt conditions. Events can be directly passed to other peripherals using a ded-
icated routing network called the event routing network. How events are routed and used by the
peripherals is configured in software.

Figure 6-1 on page 72 shows a basic diagram of all connected peripherals. The event system
can directly connect together analog and digital converters, analog comparators, I/O port pins,
the real-time counter, timer/counters, IR communication module (IRCOM), and USB interface. It
can also be used to trigger DMA transactions (DMA controller). Events can also be generated
from software and the peripheral clock.
71
8331B–AVR–03/12

Atmel AVR XMEGA AU
Figure 6-1. Event system overview and connected peripherals.

The event routing network consists of eight software-configurable multiplexers that control how
events are routed and used. These are called event channels, and allow for up to eight parallel
event configurations and routings. The maximum routing latency is two peripheral clock cycles.
The event system works in both active mode and idle sleep mode.

6.3 Events
In the context of the event system, an indication that a change of state within a peripheral has
occurred is called an event. There are two main types of events: signaling events and data
events. Signaling events only indicate a change of state while data events contain additional
information about the event.

The peripheral from which the event originates is called the event generator. Within each periph-
eral (for example, a timer/counter), there can be several event sources, such as a timer compare
match or timer overflow. The peripheral using the event is called the event user, and the action
that is triggered is called the event action.

DAC

Timer /
Counters

USB

ADC

Real Time
Counter

Port pins

CPU /
Software

DMA
Controller

IRCOM

Event Routing Network

Event
System

Controller

clkPER
Prescaler

AC
72
8331B–AVR–03/12

Atmel AVR XMEGA AU
Figure 6-2. Example of event source, generator, user, and action.

Events can also be generated manually in software.

6.3.1 Signaling Events
Signaling events are the most basic type of event. A signaling event does not contain any infor-
mation apart from the indication of a change in a peripheral. Most peripherals can only generate
and use signaling events. Unless otherwise stated, all occurrences of the word ”event” are to be
understood as meaning signaling events.

6.3.2 Data Events
Data events differ from signaling events in that they contain information that event users can
decode to decide event actions based on the receiver information.

Although the event routing network can route all events to all event users, those that are only
meant to use signaling events do not have decoding capabilities needed to utilize data events.
How event users decode data events is shown in Table 6-1 on page 74.

Event users that can utilize data events can also use signaling events. This is configurable, and
is described in the datasheet module for each peripheral.

6.3.3 Peripheral Clock Events
Each event channel includes a peripheral clock prescaler with a range from 1 (no prescaling) to
32768. This enables configurable periodic event generation based on the peripheral clock. It is
possible to periodically trigger events in a peripheral or to periodically trigger synchronized
events in several peripherals. Since each event channel include a prescaler, different peripher-
als can receive triggers with different intervals.

6.3.4 Software Events
Events can be generated from software by writing the DATA and STROBE registers. The DATA
register must be written first, since writing the STROBE register triggers the operation. The
DATA and STROBE registers contain one bit for each event channel. Bit n corresponds to event
channel n. It is possible to generate events on several channels at the same time by writing to
several bit locations at once.

Event
Routing
Network

|

Compare Match

Over-/Underflow

Error

Timer/Counter

Channel Sweep

Single
Conversion

ADC

Event Generator

Event Source

Event User

Event Action

Event Action Selection
73
8331B–AVR–03/12

Atmel AVR XMEGA AU
Software-generated events last for one clock cycle and will overwrite events from other event
generators on that event channel during that clock cycle.

Table 6-1 on page 74 shows the different events, how they can be manually generated, and how
they are decoded.

6.4 Event Routing Network
The event routing network routes the events between peripherals. It consists of eight multiplex-
ers (CHnMUX), which can each be configured to route any event source to any event users. The
output from a multiplexer is referred to as an event channel. For each peripheral, it is selectable
if and how incoming events should trigger event actions. Details on cinfigurations can be found
in the datasheet for each peripheral. The event routing network is shown in Figure 6-3 on page
75.

Table 6-1. Manually generated events and decoding of events.

STROBE DATA Data Event User Signaling Event User

0 0 No event No event

0 1 Data event 01 No event

1 0 Data event 02 Signaling event

1 1 Data event 03 Signaling event
74
8331B–AVR–03/12

Atmel AVR XMEGA AU
Figure 6-3. Event routing network.

Eight multiplexers means that it is possible to route up to eight events at the same time. It is also
possible to route one event through several multiplexers.

Not all XMEGA devices contain all peripherals. This only means that a peripheral is not available
for generating or using events. The network configuration itself is compatible between all
devices.

(48)
PORTA

PORTB

PORTC

PORTD

PORTE

PORTF

ADCA

ADCB

DACA

DACB

TCF0

TCF1

(6)

(4)

TCE0

TCE1

(6)

(4)

TCD0

TCD1

(6)

(4)

TCC0

TCC1

(6)

(4)

(8)

(8)

(8)

(10)

(10)

(10)

(10)

(36)(4)

(4)

(8)

(8)

(8)

(8)

(8)

ACA

ACB

RTC

(8)

(8)

(8)

(8)

(8)

(8)

CH0MUX[7:0]

CH1MUX[7:0]

CH2MUX[7:0]

CH3MUX[7:0]

CH4MUX[7:0]

CH5MUX[7:0]

CH6MUX[7:0]

CH7MUX[7:0]

CH1CTRL[7:0]

CH0CTRL[7:0]

CH2CTRL[7:0]

CH3CTRL[7:0]

CH4CTRL[7:0]

CH5CTRL[7:0]

CH6CTRL[7:0]

CH7CTRL[7:0]

Event Channel 7
Event Channel 6
Event Channel 5
Event Channel 4
Event Channel 3
Event Channel 2
Event Channel 1
Event Channel 0

USB (4)

ClkPER (16)

(2)

(3)

(3)
75
8331B–AVR–03/12

Atmel AVR XMEGA AU
6.5 Event Timing
An event normally lasts for one peripheral clock cycle, but some event sources, such as a low
level on an I/O pin, will generate events continuously. Details on this are described in the
datasheet for each peripheral, but unless otherwise stated, an event lasts for one peripheral
clock cycle.

It takes a maximum of two peripheral clock cycles from when an event is generated until the
event actions in other peripherals are triggered. This ensures short and 100% predictable
response times, independent of CPU or DMA controller load or software revisions.

6.6 Filtering
Each event channel includes a digital filter. When this is enabled, an event must be sampled
with the same value for a configurable number of system clock cycles before it is accepted. This
is primarily intended for pin change events.

6.7 Quadrature Decoder
The event system includes three quadrature decoders (QDECs), which enable the device to
decode quadrature input on I/O pins and send data events that a timer/counter can decode to
count up, count down, or index/reset. Table 6-2 on page 76 summarizes which quadrature
decoder data events are available, how they are decoded, and how they can be generated. The
QDECs and related features and control and status registers are available for event channels 0,
2, and 4.

6.7.1 Quadrature Operation
A quadrature signal is characterized by having two square waves that are phase shifted 90
degrees relative to each other. Rotational movement can be measured by counting the edges of
the two waveforms. The phase relationship between the two square waves determines the
direction of rotation.

Table 6-2. Quadrature decoder data events.

STROBE DATA Data Event User Signaling Event User

0 0 No event No event

0 1 Index/reset No event

1 0 Count down Signaling event

1 1 Count up Signaling event
76
8331B–AVR–03/12

Atmel AVR XMEGA AU
Figure 6-4. Quadrature signals from a rotary encoder.

Figure 6-4 shows typical quadrature signals from a rotary encoder. The signals QDPH0 and
QDPH90 are the two quadrature signals. When QDPH90 leads QDPH0, the rotation is defined
as positive or forward. When QDPH0 leads QDPH90, the rotation is defined as negative or
reverse. The concatenation of the two phase signals is called the quadrature state or the phase
state.

In order to know the absolute rotary displacement, a third index signal (QINDX) can be used.
This gives an indication once per revolution.

6.7.2 QDEC Setup
For a full QDEC setup, the following is required:

• Thw or three I/O port pins for quadrature signal input

• Two event system channels for quadrature decoding

• One timer/counter for up, down, and optional index count

The following procedure should be used for QDEC setup:

1. Choose two successive pins on a port as QDEC phase inputs.

2. Set the pin direction for QDPH0 and QDPH90 as input.

3. Set the pin configuration for QDPH0 and QDPH90 to low level sense.

4. Select the QDPH0 pin as a multiplexer input for an event channel, n.

5. Enable quadrature decoding and digital filtering in the event channel.

6. Optional:

a. Set up a QDEC index (QINDX).

b. Select a third pin for QINDX input.

c. Set the pin direction for QINDX as input.

d. Set the pin configuration for QINDX to sense both edges.

e. Select QINDX as a multiplexer input for event channel n+1

f. Set the quadrature index enable bit in event channel n+1.

g. Select the index recognition mode for event channel n+1.

7. Set quadrature decoding as the event action for a timer/counter.

8. Select event channel n as the event source for the timer/counter.

00 10 11 01

QDPH0

QDPH90

QDINDX

Forward Direction

Backward
Direction

01 11 10 00

1 cycle / 4 states

QDPH0

QDPH90

QDINDX
77
8331B–AVR–03/12

Atmel AVR XMEGA AU
• Set the period register of the timer/counter to ('line count' * 4 - 1), the line count of the
quadrature encoder.

• Enable the timer/counter without clock prescaling.

The angle of a quadrature encoder attached to QDPH0, QDPH90 (and QINDX) can now be read
directly from the timer/counter count register. If the count register is different from BOTTOM
when the index is recognized, the timer/counter error flag is set. Similarly, the error flag is set if
the position counter passes BOTTOM without the recognition of the index.

6.8 Register Description

6.8.1 CHnMUX – Event Channel n Multiplexer register

• Bit 7:0 – CHnMUX[7:0]: Channel Multiplexer
These bits select the event source according to Table 6-3. This table is valid for all XMEGA
devices regardless of whether the peripheral is present or not. Selecting event sources from
peripherals that are not present will give the same result as when this register is zero. When this
register is zero, no events are routed through. Manually generated events will override CHnMUX
and be routed to the event channel even if this register is zero.

Bit 7 6 5 4 3 2 1 0

CHnMUX[7:0] CHnMUX

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 6-3. CHnMUX[7:0] bit settings.

CHnMUX[7:4] CHnMUX[3:0] Group Configuration Event Source

0000 0 0 0 0
None (manually generated events
only)

0000 0 0 0 1 (Reserved)

0000 0 0 1 X (Reserved)

0000 0 1 X X (Reserved)

0000 1 0 0 0 RTC_OVF RTC overflow

0000 1 0 0 1 RTC_CMP RTC compare match

0000 1 0 1 0

USB start of frame on CH0(2)

USB error on CH1(2)

USB overflow on CH2(2)

USB setup on CH3(2)

0000 1 0 1 X (Reserved)

0000 1 1 X X (Reserved)

0001 0 0 0 0 ACA_CH0 ACA channel 0

0001 0 0 0 1 ACA_CH1 ACA channel 1

0001 0 0 1 0 ACA_WIN ACA window

0001 0 0 1 1 ACB_CH0 ACB channel 0
78
8331B–AVR–03/12

Atmel AVR XMEGA AU
Notes: 1. The description of how the ports generate events is described in ”Port Event” on page 150.

2. The different USB events can be selected for only event channel, 0 to 3.

0001 0 1 0 0 ACB_CH1 ACB channel 1

0001 0 1 0 1 ACB_WIN ACB window

0001 0 1 1 X (Reserved)

0001 1 X X X (Reserved)

0010 0 0 n ADCA_CHn ADCA channel n (n =0, 1, 2 or 3)

0010 0 1 n ADCB_CHn ADCB channel n (n=0, 1, 2 or 3)

0010 1 X X X (Reserved)

0011 X X X X (Reserved)

0100 X X X X (Reserved)

0101 0 n PORTA_PINn(1) PORTA pin n (n= 0, 1, 2 ... or 7)

0101 1 n PORTB_PINn(1) PORTB pin n (n= 0, 1, 2 ... or 7)

0110 0 n PORTC_PINn(1) PORTC pin n (n= 0, 1, 2 ... or 7)

0110 1 n PORTD_PINn(1) PORTD pin n (n= 0, 1, 2 ... or 7)

0111 0 n PORTE_PINn(1) PORTE pin n (n= 0, 1, 2 ... or 7)

0111 1 n PORTF_PINn(1) PORTF pin n (n= 0, 1, 2 ... or 7)

1000 M PRESCALER_M ClkPER divide by 2M (M=0 to 15)

1001 X X X X (Reserved)

1010 X X X X (Reserved)

1011 X X X X (Reserved)

1100 0 E See Table 6-4 Timer/counter C0 event type E

1100 1 E See Table 6-4 Timer/counter C1 event type E

1101 0 E See Table 6-4 Timer/counter D0 event type E

1101 1 E See Table 6-4 Timer/counter D1 event type E

1110 0 E See Table 6-4 Timer/counter E0 event type E

1110 1 E See Table 6-4 Timer/counter E1 event type E

1111 0 E See Table 6-4 Timer/counter F0 event type E

1111 1 E See Table 6-4 Timer/counter F1 event type E

Table 6-4. Timer/counter events.

T/C Event E Group Configuration Event Type

0 0 0 TCxn_OVF Over/Underflow (x = C, D, E or F) (n= 0 or 1)

0 0 1 TCxn_ERR Error (x = C, D, E or F) (n= 0 or 1)

0 1 X (Reserved)

1 0 0 TCxn_CCA Capture or compare A (x = C, D, E or F) (n= 0 or 1)

Table 6-3. CHnMUX[7:0] bit settings.

CHnMUX[7:4] CHnMUX[3:0] Group Configuration Event Source
79
8331B–AVR–03/12

Atmel AVR XMEGA AU
6.8.2 CHnCTRL – Event Channel n Control register

• Bit 7 – Reserved
This bit is reserved and will always be read as zero. For compatibility with future devices, always
write this bit to zero when this register is written.

• Bit 6:5 – QDIRM[1:0]: Quadrature Decode Index Recognition Mode
These bits determine the quadrature state for the QDPH0 and QDPH90 signals, where a valid
index signal is recognized and the counter index data event is given according to Table 6-5 on
page 80. These bits should only be set when a quadrature encoder with a connected index sig-
nal is used.These bits are available only for CH0CTRL, CH2CTRL, and CH4CTRL.

• Bit 4 – QDIEN: Quadrature Decode Index Enable
When this bit is set, the event channel will be used as a QDEC index source, and the index data
event will be enabled.

This bit is available only for CH0CTRL, CH2CTRL, and CH4CTRL.

• Bit 3 – QDEN: Quadrature Decode Enable
Setting this bit enables QDEC operation.

This bit is available only for CH0CTRL, CH2CTRL, and CH4CTRL.

• Bit 2:0 – DIGFILT[2:0]: Digital Filter Coefficient
These bits define the length of digital filtering used. Events will be passed through to the event
channel only when the event source has been active and sampled with the same level for the
number of peripheral clock cycles defined by DIGFILT.

1 0 1 TCxn_CCB Capture or compare B (x = C, D, E or F) (n= 0 or 1)

1 1 0 TCxn_CCC Capture or compare C (x = C, D, E or F) (n= 0)

1 1 1 TCxn_CCD Capture or compare D (x = C, D, E or F) (n= 0)

Table 6-4. Timer/counter events. (Continued)

T/C Event E Group Configuration Event Type

Bit 7 6 5 4 3 2 1 0

– QDIRM[1:0] QDIEN QDEN DIGFILT[2:0] CHnCTRL

Read/Write R R/W R/W R/W R/W R/W R/W R

Initial Value 0 0 0 0 0 0 0 0

Table 6-5. QDIRM bit settings.

QDIRM[1:0] Index Recognition State

0 0 {QDPH0, QDPH90} = 0b00

0 1 {QDPH0, QDPH90} = 0b01

1 0 {QDPH0, QDPH90} = 0b10

1 1 {QDPH0, QDPH90} = 0b11
80
8331B–AVR–03/12

Atmel AVR XMEGA AU

6.8.3 STROBE – Strobe register
If the STROBE register location is written, each event channel will be set according to the
STROBE[n] and corresponding DATA[n] bit settings, if any are unequal to zero.

A single event lasting for one peripheral clock cycle will be generated.

6.8.4 DATA – Data register
This register contains the data value when manually generating a data event. This register must
be written before the STROBE register. For details, See ”STROBE – Strobe register” on page
81.

Table 6-6. Digital filter coefficient values .

DIGFILT[2:0] Group Configuration Description

000 1SAMPLE One sample

001 2SAMPLES Two samples

010 3SAMPLES Three samples

011 4SAMPLES Four samples

100 5SAMPLES Five samples

101 6SAMPLES Six samples

110 7SAMPLES Seven samples

111 8SAMPLES Eight samples

Bit 7 6 5 4 3 2 1 0

+0x10 STROBE[7:0] STROBE

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x11 DATA[7:0] DATA

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
81
8331B–AVR–03/12

Atmel AVR XMEGA AU
6.9 Register Summary

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page
+0x00 CH0MUX CH0MUX[7:0] 78

+0x01 CH1MUX CH1MUX[7:0] 78

+0x02 CH2MUX CH2MUX[7:0] 78

+0x03 CH3MUX CH3MUX[7:0] 78

+0x04 CH4MUX CH4MUX[7:0] 78

+0x05 CH5MUX CH5MUX[7:0] 78

+0x06 CH6MUX CH6MUX[7:0] 78

+0x07 CH7MUX CH7MUX[7:0] 78

+0x08 CH0CTRL – QDIRM[1:0] QDIEN QDEN DIGFILT[2:0] 80

+0x09 CH1CTRL – – – – – DIGFILT[2:0] 80

+0x0A CH2CTRL – QDIRM[1:0] QDIEN QDEN DIGFILT[2:0] 80

+0x0B CH3CTRL – – – – – DIGFILT[2:0] 80

+0x0C CH4CTRL – QDIRM[1:0] QDIEN QDEN DIGFILT[2:0] 80

+0x0D CH5CTRL – – – – – DIGFILT[2:0] 80

+0x0E CH6CTRL – – – – – DIGFILT[2:0] 80

+0x0F CH7CTRL – – – – – DIGFILT[2:0] 80

+0x10 STROBE STROBE[7:0] 81

+0x11 DATA DATA[7:0] 81
82
8331B–AVR–03/12

Atmel AVR XMEGA AU
7. System Clock and Clock Options

7.1 Features
• Fast start-up time
• Safe run-time clock switching
• Internal oscillators:

– 32MHz run-time calibrated oscillator
– 2MHz run-time calibrated oscillator
– 32.768kHz calibrated oscillator
– 32kHz ultra low power (ULP) oscillator with 1kHz output

• External clock options
– 0.4MHz - 16MHz crystal oscillator
– 32.768kHz crystal oscillator
– External clock

• PLL with 20MHz - 128MHz output frequency
– Internal and external clock options and 1x to 31x multiplication
– Lock detector

• Clock prescalers with 1x to 2048x division
• Fast peripheral clocks running at 2 and 4 times the CPU clock
• Automatic run-time calibration of internal oscillators
• External oscillator and PLL lock failure detection with optional non-maskable interrupt

7.2 Overview
XMEGA devices have a flexible clock system supporting a large number of clock sources. It
incorporates both accurate internal oscillators and external crystal oscillator and resonator sup-
port. A high-frequency phase locked loop (PLL) and clock prescalers can be used to generate a
wide range of clock frequencies. A calibration feature (DFLL) is available, and can be used for
automatic run-time calibration of the internal oscillators to remove frequency drift over voltage
and temperature. An oscillator failure monitor can be enabled to issue a non-maskable interrupt
and switch to the internal oscillator if the external oscillator or PLL fails.

When a reset occurs, all clock sources except the 32kHz ultra low power oscillator are disabled.
After reset, the device will always start up running from the 2MHz internal oscillator. During nor-
mal operation, the system clock source and prescalers can be changed from software at any
time.

Figure 7-1 on page 84 presents the principal clock system in the XMEGA family of devices. Not
all of the clocks need to be active at a given time. The clocks for the CPU and peripherals can be
stopped using sleep modes and power reduction registers, as described in ”Power Management
and Sleep Modes” on page 105.
83
8331B–AVR–03/12

Atmel AVR XMEGA AU
Figure 7-1. The clock system, clock sources, and clock distribution.

Real Time
Counter Peripherals RAM AVR CPU Non-Volatile

Memory

Watchdog
Timer

Brown-out
Detector

System Clock Prescalers

USB

Prescaler

System Clock Multiplexer
(SCLKSEL)

PLLSRC

RTCSRC

D
IV32

32 kHz
Int. ULP

32.768 kHz
Int. OSC

32.768 kHz
TOSC

2 MHz
Int. Osc

32 MHz
Int. Osc

0.4 – 16 MHz
XTAL

D
IV32

D
IV32

D
IV4XOSCSEL

PLL

USBSRC

TO
SC

1

TO
SC

2

XTAL1

XTAL2

clkSYSclkRTC

clkPER2

clkPER

clkCPU

clkPER4

clkUSB
84
8331B–AVR–03/12

Atmel AVR XMEGA AU
7.3 Clock Distribution
Figure 7-1 on page 84 presents the principal clock distribution system used in XMEGA devices.

7.3.1 System Clock - ClkSYS

The system clock is the output from the main system clock selection. This is fed into the prescal-
ers that are used to generate all internal clocks except the asynchronous and USB clocks.

7.3.2 CPU Clock - ClkCPU

The CPU clock is routed to the CPU and nonvolatile memory. Halting the CPU clock inhibits the
CPU from executing instructions.

7.3.3 Peripheral Clock - ClkPER

The majority of peripherals and system modules use the peripheral clock. This includes the DMA
controller, event system, interrupt controller, external bus interface and RAM. This clock is
always synchronous to the CPU clock, but may run even when the CPU clock is turned off.

7.3.4 Peripheral 2x/4x Clocks - ClkPER2/ClkPER4

Modules that can run at two or four times the CPU clock frequency can use the peripheral 2x
and peripheral 4x clocks.

7.3.5 Asynchronous Clock - ClkRTC

The asynchronous clock allows the real-time counter (RTC) to be clocked directly from an exter-
nal 32.768kHz crystal oscillator or the 32 times prescaled output from the internal 32.768kHz
oscillator or ULP oscillator. The dedicated clock domain allows operation of this peripheral even
when the device is in sleep mode and the rest of the clocks are stopped.

7.3.6 USB Clock - ClkUSB

The USB device module requires a 12MHz or 48MHz clock. It has a separate clock source
selection in order to avoid system clock source limitations when USB is used.

7.4 Clock Sources
The clock sources are divided in two main groups: internal oscillators and external clock
sources. Most of the clock sources can be directly enabled and disabled from software, while
others are automatically enabled or disabled, depending on peripheral settings. After reset, the
device starts up running from the 2MHz internal oscillator. The other clock sources, DFLLs and
PLL, are turned off by default.

7.4.1 Internal Oscillators
The internal oscillators do not require any external components to run. For details on character-
istics and accuracy of the internal oscillators, refer to the device datasheet.

7.4.1.1 32kHz Ultra Low Power Oscillator
This oscillator provides an approximate 32kHz clock. The 32kHz ultra low power (ULP) internal
oscillator is a very low power clock source, and it is not designed for high accuracy.The oscillator
employs a built-in prescaler that provides a 1kHz output. The oscillator is automatically
enabled/disabled when it is used as clock source for any part of the device. This oscillator can
be selected as the clock source for the RTC.
85
8331B–AVR–03/12

Atmel AVR XMEGA AU
7.4.1.2 32.768kHz Calibrated Oscillator
This oscillator provides an approximate 32.768kHz clock. It is calibrated during production to
provide a default frequency close to its nominal frequency. The calibration register can also be
written from software for run-time calibration of the oscillator frequency. The oscillator employs a
built-in prescaler, which provides both a 32.768kHz output and a 1.024kHz output.

7.4.1.3 32MHz Run-time Calibrated Oscillator
The 32MHz run-time calibrated internal oscillator is a high-requency oscillator. It is calibrated
during production to provide a default frequency close to its nominal frequency. A digital fre-
quency looked loop (DFLL) can be enabled for automatic run-time calibration of the oscillator to
compensate for temperature and voltage drift and optimize the oscillator accuracy. This oscilla-
tor can also be adjusted and calibrated to any frequency between 30MHz and 55MHz. The
production signature row contains 48 MHz calibration values intended used when the oscillator
is used a full-speed USB clock source.

7.4.1.4 2MHz Run-time Calibrated Oscillator
The 2MHz run-time calibrated internal oscillator is the default system clock source after reset. It
is calibrated during production to provide a default frequency close to its nominal frequency. A
DFLL can be enabled for automatic run-time calibration of the oscillator to compensate for tem-
perature and voltage drift and optimize the oscillator accuracy.

7.4.2 External Clock Sources
The XTAL1 and XTAL2 pins can be used to drive an external oscillator, either a quartz crystal or
a ceramic resonator. XTAL1 can be used as input for an external clock signal. The TOSC1 and
TOSC2 pins is dedicated to driving a 32.768kHz crystal oscillator.

7.4.2.1 0.4MHz - 16MHz Crystal Oscillator
This oscillator can operate in four different modes optimized for different frequency ranges, all
within 0.4MHz - 16MHz. Figure 7-2 shows a typical connection of a crystal oscillator or
resonator.

Figure 7-2. Crystal oscillator connection.

Two capacitors, C1 and C2, may be added to match the required load capacitance for the con-
nected crystal.

7.4.2.2 External Clock Input
To drive the device from an external clock source, XTAL1 must be driven as shown in Figure 7-
3 on page 87. In this mode, XTAL2 can be used as a general I/O pin.

C1

C2
XTAL2

XTAL1

GND
86
8331B–AVR–03/12

Atmel AVR XMEGA AU
Figure 7-3. External clock drive configuration.

7.4.2.3 32.768kHz Crystal Oscillator
A 32.768kHz crystal oscillator can be connected between the TOSC1 and TOSC2 pins and
enables a dedicated low frequency oscillator input circuit. A typical connection is shown in Fig-
ure 7-4 on page 87. A low power mode with reduced voltage swing on TOSC2 is available. This
oscillator can be used as a clock source for the system clock and RTC, and as the DFLL refer-
ence clock.

Figure 7-4. 32.768kHz crystal oscillator connection.

Two capacitors, C1 and C2, may be added to match the required load capacitance for the con-
nected crystal. For details on recommened TOSC characteristics and capacitor laod, refer to
device datasheets.

7.5 System Clock Selection and Prescalers
All the calibrated internal oscillators, the external clock sources (XOSC), and the PLL output can
be used as the system clock source. The system clock source is selectable from software, and
can be changed during normal operation. Built-in hardware protection prevents unsafe clock
switching. It is not possible to select a non-stable or disabled oscillator as the clock source, or to
disable the oscillator currently used as the system clock source. Each oscillator option has a sta-
tus flag that can be read from software to check that the oscillator is ready.

The system clock is fed into a prescaler block that can divide the clock signal by a factor from 1
to 2048 before it is routed to the CPU and peripherals. The prescaler settings can be changed
from software during normal operation. The first stage, prescaler A, can divide by a factor of
from 1 to 512. Then, prescalers B and C can be individually configured to either pass the clock
through or combine divide it by a factor from 1 to 4. The prescaler guarantees that derived
clocks are always in phase, and that no glitches or intermediate frequencies occur when chang-
ing the prescaler setting. The prescaler settings are updated in accordance with the rising edge
of the slowest clock.

General
Purpose

I/O
XTAL2

XTAL1
External

Clock
Signal

C1

C2
TOSC2

TOSC1

GND
87
8331B–AVR–03/12

Atmel AVR XMEGA AU
Figure 7-5. System clock selection and prescalers.

Prescaler A divides the system clock, and the resulting clock is clkPER4. Prescalers B and C can
be enabled to divide the clock speed further to enable peripheral modules to run at twice or four
times the CPU clock frequency. If Prescalers B and C are not used, all the clocks will run at the
same frequency as the output from Prescaler A.

The system clock selection and prescaler registers are protected by the configuration change
protection mechanism, employing a timed write procedure for changing the system clock and
prescaler settings. For details, refer to ”Configuration Change Protection” on page 13.

7.6 PLL with 1x-31x Multiplication Factor
The built-in phase locked loop (PLL) can be used to generate a high-frequency system clock.
The PLL has a user-selectable multiplication factor of from 1 to 31. The output frequency, fOUT, is
given by the input frequency, fIN, multiplied by the multiplication factor, PLL_FAC.

Four different clock sources can be chosen as input to the PLL:

• 2MHz internal oscillator

• 32MHz internal oscillator divided by 4

• 0.4MHz - 16MHz crystal oscillator

• External clock

To enable the PLL, the following procedure must be followed:

1. Enable reference clock source.

2. Set the multiplication factor and select the clock reference for the PLL.

3. Wait until the clock reference source is stable.

4. Enable the PLL.

Hardware ensures that the PLL configuration cannot be changed when the PLL is in use. The
PLL must be disabled before a new configuration can be written.

It is not possible to use the PLL before the selected clock source is stable and the PLL has
locked.

The reference clock source cannot be disabled while the PLL is running.

Prescaler A
1, 2, 4, ... , 512

Prescaler B
1, 2, 4

Prescaler C
1, 2

Internal 2MHz Osc.

Internal 32.768kHz Osc.

Internal 32MHz Osc.

External Oscillator or Clock.

ClkCPU

Clock Selection

ClkPER

ClkSYS

ClkPER2ClkPER4

Internal PLL.

fOUT fIN PLL_FAC⋅=
88
8331B–AVR–03/12

Atmel AVR XMEGA AU
7.7 DFLL 2MHz and DFLL 32MHz
Two built-in digital frequency locked loops (DFLLs) can be used to improve the accuracy of the
2MHz and 32MHz internal oscillators. The DFLL compares the oscillator frequency with a more
accurate reference clock to do automatic run-time calibration of the oscillator and compensate
for temperature and voltage drift. The choices for the reference clock sources are:

• 32.768kHz calibrated internal oscillator

• 32.768kHz crystal oscillator connected to the TOSC pins

• External clock

• USB start of frame

The DFLLs divide the oscillator reference clock by 32 to use a 1.024kHz reference. The refer-
ence clock is individually selected for each DFLL, as shown on Figure 7-6 on page 89.

Figure 7-6. DFLL reference clock selection.

The ideal counter value representing the frequency ratio between the internal oscillator and a
1.024kHz reference clock is loaded into the DFLL oscillator compare register (COMP) during
reset. For the 32MHz oscillator, this register can be written from software to make the oscillator
run at a different frequency or when the ratio between the reference clock and the oscillator is
different (for example when the USB start of frame is used). The 48MHz calibration values must
be read from the production signature row and written to the 32MHz CAL register before the
DFLL is enabled with USB SOF as reference source.

32.768 kHz Crystal Osc

External Clock

32.768 kHz Int. Osc

DFLL32M

32 MHz Int. RCOSC

DFLL2M

2 MHz Int. RCOSC

clkRC32MCREF

clkRC2MCREF

TOSC1

TOSC2

XTAL1

DIV32DIV32

XOSCSEL

USB Start of Frame
89
8331B–AVR–03/12

Atmel AVR XMEGA AU
The value that should be written to the COMP register is given by the following formula:

When the DFLL is enabled, it controls the ratio between the reference clock frequency and the
oscillator frequency. If the internal oscillator runs too fast or too slow, the DFLL will decrement or
increment its calibration register value by one to adjust the oscillator frequency. The oscillator is
considered running too fast or too slow when the error is more than a half calibration step size.

Figure 7-7. Automatic run-time calibration.

The DFLL will stop when entering a sleep mode where the oscillators are stopped. After wake
up, the DFLL will continue with the calibration value found before entering sleep. The reset value
of the DFLL calibration register can be read from the production signature row.

When the DFLL is disabled, the DFLL calibration register can be written from software for man-
ual run-time calibration of the oscillator.

7.8 PLL and External Clock Source Failure Monitor
A built-in failure monitor is available for the PLL and external clock source. If the failure monitor
is enabled for the PLL and/or the external clock source, and this clock source fails (the PLL
looses lock or the external clock source stops) while being used as the system clock, the device
will:

• Switch to run the system clock from the 2MHz internal oscillator

• Reset the oscillator control register and system clock selection register to their default values

• Set the failure detection interrupt flag for the failing clock source (PLL or external clock)

)(
RCnCREF

OSC

f
f

hexCOMP =

DFLL CNT

COMP

0

tRCnCREF

Frequency
OK RCOSC fast,

CALA decremented

RCOSC slow,
CALA incremented

clkRCnCREF
90
8331B–AVR–03/12

Atmel AVR XMEGA AU
• Issue a non-maskable interrupt (NMI)

If the PLL or external clock source fails when not being used for the system clock, it is automati-
cally disabled, and the system clock will continue to operate normally. No NMI is issued. The
failure monitor is meant for external clock sources above 32kHz. It cannot be used for slower
external clocks.

When the failure monitor is enabled, it will not be disabled until the next reset.

The failure monitor is stopped in all sleep modes where the PLL or external clock source are
stopped. During wake up from sleep, it is automatically restarted.

The PLL and external clock source failure monitor settings are protected by the configuration
change protection mechanism, employing a timed write procedure for changing the settings. For
details, refer to ”Configuration Change Protection” on page 13.
91
8331B–AVR–03/12

Atmel AVR XMEGA AU
7.9 Register Description – Clock

7.9.1 CTRL – Control register

• Bit 7:3 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

• Bit 2:0 – SCLKSEL[2:0]: System Clock Selection
These bits are used to select the source for the system clock. See Table 7-1 for the different
selections. Changing the system clock source will take two clock cycles on the old clock source
and two more clock cycles on the new clock source. These bits are protected by the configura-
tion change protection mechanism. For details, refer to ”Configuration Change Protection” on
page 13.

SCLKSEL cannot be changed if the new clock source is not stable. The old clock can not be dis-
abled until the clock switching is completed.

7.9.2 PSCTRL – Prescaler register
This register is protected by the configuration change protection mechanism. For details, refer to
”Configuration Change Protection” on page 13.

• Bit 7 – Reserved
This bit is unused and reserved for future use. For compatibility with future devices, always write
this bit to zero when this register is written.

Bit 7 6 5 4 3 2 1 0

+0x00 – – – – – SCLKSEL[2:0] CTRL

Read/Write R R R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 7-1. System clock selection.

SCLKSEL[2:0] Group Configuration Description

000 RC2MHZ 2MHz internal oscillator

001 RC32MHZ 32MHz internal oscillator

010 RC32KHZ 32.768kHz internal oscillator

011 XOSC External oscillator or clock

100 PLL Phase locked loop

101 — Reserved

110 — Reserved

111 — Reserved

Bit 7 6 5 4 3 2 1 0

+0x01 – PSADIV[4:0] PSBCDIV PSCTRL

Read/Write R R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
92
8331B–AVR–03/12

Atmel AVR XMEGA AU
• Bit 6:2 – PSADIV[4:0]: Prescaler A Division Factor
These bits define the division ratio of the clock prescaler A according to Table 7-2. These bits
can be written at run-time to change the frequency of the ClkPER4 clock relative to the system
clock, ClkSYS.

• Bit 1:0 – PSBCDIV: Prescaler B and C Division Factors
These bits define the division ratio of the clock prescalers B and C according to Table 7-3. Pres-
caler B will set the clock frequency for the ClkPER2 clock relative to the ClkPER4 clock. Prescaler C
will set the clock frequency for the ClkPER and ClkCPU clocks relative to the ClkPER2 clock. Refer
to Figure 7-5 on page 88 fore more details.

Table 7-2. Prescaler A division factor.

PSADIV[4:0] Group Configuration Description

00000 1 No division

00001 2 Divide by 2

00011 4 Divide by 4

00101 8 Divide by 8

00111 16 Divide by 16

01001 32 Divide by 32

01011 64 Divide by 64

01101 128 Divide by 128

01111 256 Divide by 256

10001 512 Divide by 512

10101 Reserved

10111 Reserved

11001 Reserved

11011 Reserved

11101 Reserved

11111 Reserved

Table 7-3. Prescaler B and C division factors.

PSBCDIV[1:0] Group Configuration Prescaler B division Prescaler C division

00 1_1 No division No division

01 1_2 No division Divide by 2

10 4_1 Divide by 4 No division

11 2_2 Divide by 2 Divide by 2
93
8331B–AVR–03/12

Atmel AVR XMEGA AU
7.9.3 LOCK – Lock register

• Bit 7:1 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

• Bit 0 – LOCK: Clock System Lock
When this bit is written to one, the CTRL and PSCTRL registers cannot be changed, and the
system clock selection and prescaler settings are protected against all further updates until after
the next reset. This bit is protected by the configuration change protection mechanism. For
details, refer to ”Configuration Change Protection” on page 13.

The LOCK bit can be cleared only by a reset.

7.9.4 RTCCTRL – RTC Control register

• Bit 7:4 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

• Bit 3:1 – RTCSRC[2:0]: RTC Clock Source
These bits select the clock source for the real-time counter according to Table 7-4.

Bit 7 6 5 4 3 2 1 0

+0x02 – – – – – – – LOCK LOCK

Read/Write R R R R R R R R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x03 – – – – RTCSRC[2:0] RTCEN RTCCTRL

Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 7-4. RTC clock source selection.

RTCSRC[2:0] Group Configuration Description

000 ULP 1kHz from 32kHz internal ULP oscillator

001 TOSC 1.024kHz from 32.768kHz crystal oscillator on TOSC

010 RCOSC 1.024kHz from 32.768kHz internal oscillator

011 — Reserved

100 — Reserved

101 TOSC32 32.768kHz from 32.768kHz crystal oscillator on TOSC

110 RCOSC32 32.768kHz from 32.768kHz internal oscillator

111 EXTCLK External clock from TOSC1
94
8331B–AVR–03/12

Atmel AVR XMEGA AU
• Bit 0 – RTCEN: RTC Clock Source Enable
Setting the RTCEN bit enables the selected RTC clock source for the real-time counter.

7.9.5 USBSCTRL – USB Control register

• Bit 7:6 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

• Bit 5:3 – USBPSDIV[2:0]: USB Prescaler Division Factor
These bits define the division ratio of the USB clock prescaler according to Table 7-5 on page
95. These bits are locked as long as the USB clock source is enabled.

• Bit 2:1 – USBSRC[1:0]: USB Clock Source
These bits select the clock source for the USB module according to Table 7-6 on page 95.

Note: 1. The 32MHz internal oscillator must be calibrated to 48MHz before selecting this as source for
the USB device module. Refer to ”DFLL 2MHz and DFLL 32MHz” on page 89.

• Bit 0 – USBSEN: USB Clock Source Enable
Setting this bit enables the selected clock source for the USB device module.

Bit 7 6 5 4 3 2 1 0

+0x04 – – USBPSDIV[2:0] USBSRC[1:0] USBSEN USBSCTRL

Read/Write R R R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 7-5. USB prescaler division factor.

USBPSDIV[2:0] Group Configuration Description

000 1 No division

001 2 Divide by 2

010 4 Divide by 4

011 8 Divide by 8

100 16 Divide by 16

101 32 Divide by 32

110 — Reserved

111 — Reserved

Table 7-6. USB clock source.

USBSRC[1:0] Group Configuration Description

00 PLL PLL

01 RC32M 32MHz internal oscillator(1)
95
8331B–AVR–03/12

Atmel AVR XMEGA AU
7.10 Register Description – Oscillator

7.10.1 CTRL – Oscillator Control register

• Bit 7:5 – Reserved

These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

• Bit 4 – PLLEN: PLL Enable
Setting this bit enables the PLL. Before the PLL is enabled, it must be configured with the
desired multiplication factor and clock source. See ”STATUS – Oscillator Status register” on
page 97.

• Bit 3 – XOSCEN: External Oscillator Enable
Setting this bit enables the selected external clock source. Refer to ”XOSCCTRL – XOSC Con-
trol register” on page 97 for details on how to select the external clock source. The external clock
source should be allowed time to stabilize before it is selected as the source for the system
clock. See ”STATUS – Oscillator Status register” on page 97.

• Bit 2 – RC32KEN: 32.768kHz Internal Oscillator Enable
Setting this bit enables the 32.768kHz internal oscillator. The oscillator must be stable before it
is selected as the source for the system clock. See ”STATUS – Oscillator Status register” on
page 97.

• Bit 1 – RC32MEN: 32MHz Internal Oscillator Enable
Setting this bit will enable the 32MHz internal oscillator. The oscillator must be stable before it is
selected as the source for the system clock. See ”STATUS – Oscillator Status register” on page
97.

• Bit 0 – RC2MEN: 2MHz Internal Oscillator Enable
Setting this bit enables the 2MHz internal oscillator. The oscillator must be stable before it is
selected as the source for the system clock. See ”STATUS – Oscillator Status register” on page
97.

By default, the 2MHz internal oscillator is enabled and this bit is set.

Bit 7 6 5 4 3 2 1 0

+0x00 – – – PLLEN XOSCEN RC32KEN RC32MEN RC2MEN CTRL

Read/Write R R R R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 1
96
8331B–AVR–03/12

Atmel AVR XMEGA AU
7.10.2 STATUS – Oscillator Status register

• Bit 7:5 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

• Bit 4 – PLLRDY: PLL Ready
This flag is set when the PLL has locked on the selected frequency and is ready to be used as
the system clock source.

• Bit 3 – XOSCRDY: External Clock Source Ready
This flag is set when the external clock source is stable and is ready to be used as the system
clock source.

• Bit 2 – RC32KRDY: 32.768kHz Internal Oscillator Ready
This flag is set when the 32.768kHz internal oscillator is stable and is ready to be used as the
system clock source.

• Bit 1 – RC32MRDY: 32MHz Internal Oscillator Ready
This flag is set when the 32MHz internal oscillator is stable and is ready to be used as the sys-
tem clock source.

• Bit 0 – RC2MRDY: 2MHz Internal Oscillator Ready
This flag is set when the 2MHz internal oscillator is stable and is ready to be used as the system
clock source.

7.10.3 XOSCCTRL – XOSC Control register

• Bit 7:6 – FRQRANGE[1:0]: 0.4 - 16MHz Crystal Oscillator Frequency Range Select
These bits select the frequency range for the connected crystal oscillator according to Table 7-7
on page 98.

Bit 7 6 5 4 3 2 1 0

+0x01 – – – PLLRDY XOSCRDY RC32KRDY RC32MRDY RC2MRDY STATUS

Read/Write R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x02 FRQRANGE[1:0] X32KLPM XOSCPWR XOSCSEL[3:0] XOSCCTRL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
97
8331B–AVR–03/12

Atmel AVR XMEGA AU
Note: Refer to Electrical characteristics section in device datasheet to retrieve the best setting for a
given frequency.

• Bit 5 – X32KLPM: Crystal Oscillator 32.768kHz Low Power Mode
Setting this bit enables the low power mode for the 32.768kHz crystal oscillator. This will reduce
the swing on the TOSC2 pin.

• Bit 4 – XOSCPWR: Crystal Oscillator Drive
Setting this bit will increase the current in the 0.4MHz - 16MHz crystal oscillator and increase the
swing on the XTAL2 pin. This allows for driving crystals with higher load or higher frequency
than specfiied by the FRQRANGE bits.

• Bit 3:0 – XOSCSEL[3:0]: Crystal Oscillator Selection
These bits select the type and start-up time for the crystal or resonator that is connected to the
XTAL or TOSC pins. See Table 7-8 for crystal selections. If an external clock or external oscilla-
tor is selected as the source for the system clock, see ”CTRL – Oscillator Control register” on
page 96. This configuration cannot be changed.

Notes: 1. This option should be used only when frequency stability at startup is not important for the
application. The option is not suitable for crystals.

2. This option is intended for use with ceramic resonators. It can also be used when the fre-
quency stability at startup is not important for the application.

3. When the external oscillator is used as the reference for a DFLL, only EXTCLK and 32KHZ
can be selected.

Table 7-7. 16MHz crystal oscillator frequency range selection.

FRQRANGE[1:0] Group Configuration
Typical Frequency
Range

Recommended Range for
Capacitors C1 and C2 (pF)

00 04TO2 0.4MHz - 2MHz 100-300

01 2TO9 2MHz - 9MHz 10-40

10 9TO12 9MHz - 12MHz 10-40

11 12TO16 12MHz - 16MHz 10-30

Table 7-8. External oscillator selection and start-up time.

XOSCSEL[3:0] Group Configuration Selected Clock Source Start-up Time

0000 EXTCLK(3) External Clock 6 CLK

0010 32KHZ(3) 32.768kHz TOSC 16K CLK

0011 XTAL_256CLK(1) 0.4MHz - 16MHz XTAL 256 CLK

0111 XTAL_1KCLK(2) 0.4MHz - 16MHz XTAL 1K CLK

1011 XTAL_16KCLK 0.4MHz - 16MHz XTAL 16K CLK
98
8331B–AVR–03/12

Atmel AVR XMEGA AU
7.10.4 XOSCFAIL – XOSC Failure Detection register

• Bit 7:4 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

• Bit 3 – PLLFDIF: PLL Fault Detection Flag
If PLL failure detection is enabled, PLLFDIF is set when the PLL looses lock. Writing logic one to
this location will clear PLLFDIF.

• Bit 2 – PLLFDEN: PLL Fault Detection Enable
Setting this bit will enable PLL failure detection. A non-maskable interrupt will be issued when
PLLFDIF is set.

This bit is protected by the configuration change protection mechanism. Refer to ”Configuration
Change Protection” on page 13 for details.

• Bit 1 – XOSCFDIF: Failure Detection Interrupt Flag
If the external clock source oscillator failure monitor is enabled, XOSCFDIF is set when a failure
is detected. Writing logic one to this location will clear XOSCFDIF.

• Bit 0 – XOSCFDEN: Failure Detection Enable
Setting this bit will enable the failure detection monitor, and a non-maskable interrupt will be
issued when XOSCFDIF is set.

This bit is protected by the configuration change protection mechanism. Refer to ”Configuration
Change Protection” on page 13 for details. Once enabled, failure detection can only be disabled
by a reset.

7.10.5 RC32KCAL – 32kHz Oscillator Calibration register

• Bit 7:0 – RC32KCAL[7:0]: 32.768kHz Internal Oscillator Calibration Register
This register is used to calibrate the 32.768kHz internal oscillator. A factory-calibrated value is
loaded from the signature row of the device and written to this register during reset, giving an
oscillator frequency close to 32.768kHz. The register can also be written from software to cali-
brate the oscillator frequency during normal operation.

Bit 7 6 5 4 3 2 1 0

+0x03 – – – – PLLFDIF PLLFDEN XOSCFDIF XOSCFDEN XOSCFAIL

Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x04 RC32KCAL[7:0] RC32KCAL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value x x x x x x x x
99
8331B–AVR–03/12

Atmel AVR XMEGA AU
7.10.6 PLLCTRL – PLL Control register

• Bit 7:6 – PLLSRC[1:0]: Clock Source
The PLLSRC bits select the input source for the PLL according to Table 7-9 on page 100.

Notes: 1. The 32.768kHz TOSC cannot be selected as the source for the PLL. An external clock must be
a minimum 0.4MHz to be used as the source clock.

• Bit 5 – PLLDIV: PLL Divided Output Enable
Setting this bit will divide the output from the PLL by 2.

• Bit 4:0 – PLLFAC[4:0]: Multiplication Factor
These bits select the multiplication factor for the PLL. The multiplication factor can be in the
range of from 1x to 31x.

7.10.7 DFLLCTRL – DFLL Control register

• Bit 7:3 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

• Bit 2:1 – RC32MCREF[1:0]: 32MHz Oscillator Calibration Reference
These bits are used to select the calibration source for the 32MHz DFLL according to the Table
7-10 on page 101. These bits will select only which calibration source to use for the DFLL. In
addition, the actual clock source that is selected must enabled and configured for the calibration
to function.

Bit 7 6 5 4 3 2 1 0

+0x05 PLLSRC[1:0] PLLDIV PLLFAC[4:0] PLLCTRL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 7-9. PLL Clock Source

PLLSRC[1:0] Group Configuration PLL Input Source

00 RC2M 2MHz internal oscillator

01 — Reserved

10 RC32M 32MHz internal oscillator

11 XOSC External clock source(1)

Bit 7 6 5 4 3 2 1 0

+0x06 – – – – – RC32MCREF[1:0] RC2MCREF DFLLCTRL

Read/Write R R R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
100
8331B–AVR–03/12

Atmel AVR XMEGA AU
• Bit 0 – RC2MCREF: 2MHz Oscillator Calibration Reference
This bit is used to select the calibration source for the 2MHz DFLL. By default, this bit is zero and
the 32.768kHz internal oscillator is selected. If this bit is set to one, the 32.768kHz crystal oscil-
lator on TOSC is selected as the reference. This bit will select only which calibration source to
use for the DFLL. In addition, the actual clock source that is selected must enabled and config-
ured for the calibration to function.

7.11 Register Description – DFLL32M/DFLL2M

7.11.1 CTRL – DFLL Control register

• Bit 7:1 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

• Bit 0 – ENABLE: DFLL Enable
Setting this bit enables the DFLL and auto-calibration of the internal oscillator. The reference
clock must be enabled and stable before the DFLL is enabled.

After disabling the DFLL, the reference clock can not be disabled before the ENABLE bit is read
as zero.

7.11.2 CALA – DFLL Calibration Register A
The CALA and CALB registers hold the 13-bit DFLL calibration value that is used for automatic
run-time calibration of the internal oscillator. When the DFLL is disabled, the calibration registers
can be written by software for manual run-time calibration of the oscillator. The oscillators will
also be calibrated according to the calibration value in these registers when the DFLL is
disabled.

Table 7-10. 32MHz oscillator reference selection.

RC32MCREF[1:0] Group Configuration Description

00 RC32K 32.768kHz internal oscillator

01 XOSC32 32.768kHz crystal oscillator on TOSC

10 USBSOF USB start of frame

11 — Reserved

Bit 7 6 5 4 3 2 1 0

+0x00 – – – – – – – ENABLE CTRL

Read/Write R R R R R R R R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x02 – CALA[6:0] CALA

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 x x x x x x x
101
8331B–AVR–03/12

Atmel AVR XMEGA AU
• Bit 7 – Reserved
This bit is unused and reserved for future use. For compatibility with future devices, always write
this bit to zero when this register is written.

• Bit 6:0 – CALA[6:0]: DFLL Calibration Bits
These bits hold the part of the oscillator calibration value that is used for automatic runtime cali-
bration. A factory-calibrated value is loaded from the signature row of the device and written to
this register during reset, giving an oscillator frequency approximate to the nominal frequency for
the oscillator. The bits cannot be written when the DFLL is enabled.

7.11.3 CALB – DFLL Calibration register B

• Bit 7:6 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

• Bit 5:0 – CALB[5:0]: DFLL Calibration bits
These bits hold the part of the oscillator calibration value that is used to select the oscillator fre-
quency. A factory-calibrated value is loaded from the signature row of the device and written to
this register during reset, giving an oscillator frequency approximate to the nominal frequency for
the oscillator. These bits are not changed during automatic run-time calibration of the oscillator.
The bits cannot be written when the DFLL is enabled. When calibrating to a frequency different
from the default, the CALA bits should be set to a middle value to maximize the range for the
DFLL.

7.11.4 COMP1 – DFLL Compare register Byte 1
The COMP1 and COMP2 register pair represent the frequency ratio between the oscillator and
the reference clock. The initial value for these registers is the ratio between the internal oscillator
frequency and a 1.024kHz reference.

• Bit 7:0 – COMP1[7:0]: Compare Register Byte 1
These bits hold byte 1 of the 16-bit compare register.

Bit 7 6 5 4 3 2 1 0

+0x03 – – CALB[5:0] CALB

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 x x x x x x

Bit 7 6 5 4 3 2 1 0

+0x05 COMP[7:0] COMP1

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
102
8331B–AVR–03/12

Atmel AVR XMEGA AU
7.11.5 COMP2 – DFLL Compare register Byte 2

• Bit 7:0 – COMP2[15:8]: Compare Register Byte 2
These bits hold byte 2 of the 16-bit compare register.

Bit 7 6 5 4 3 2 1 0

+0x06 COMP[15:8] COMP2

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 7-11. Nominal DFLL32M COMP values for different output frequencies.

Oscillator Frequency (MHz) COMP Value (ClkRCnCREF = 1.024kHz)

30.0 0x7270

32.0 0x7A12

34.0 0x81B3

36.0 0x8954

38.0 0x90F5

40.0 0x9896

42.0 0xA037

44.0 0xA7D8

46.0 0xAF79

48.0 0xB71B

50.0 0xBEBC

52.0 0xC65D

54.0 0xCDFE
103
8331B–AVR–03/12

Atmel AVR XMEGA AU
7.12 Register Summary - Clock

7.13 Register Summary - Oscillator

7.14 Register Summary - DFLL32M/DFLL2M

7.15 Oscillator Failure Interrupt Vector Summary

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page
+0x00 CTRL – – – – – SCLKSEL[2:0] 92

+0x01 PSCTRL – PSADIV[4:0] PSBCDIV[1:0] 92

+0x02 LOCK – – – – – – – LOCK 94

+0x03 RTCCTRL – – – – RTCSRC[2:0] RTCEN 94

+0x04 USBSCTRL – – USBPSDIV[2:0] USBSRC[1:0] USBSEN 94

+0x05 Reserved – – – – – – – –

+0x06 Reserved – – – – – – – –

+0x07 Reserved – – – – – – – –

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page
+0x00 CTRL – – – PLLEN XOSCEN RC32KEN R32MEN RC2MEN 96

+0x01 STATUS – – – PLLRDY XOSCRDY RC32KRDY R32MRDY RC2MRDY 96

+0x02 XOSCCTRL FRQRANGE[1:0] X32KLPM XOSCPWR XOSCSEL[3:0] 97

+0x03 XOSCFAIL – – – – PLLFDIF PLLFDEN XOSCFDIF XOSCFDEN 99

+0x04 RC32KCAL RC32KCAL[7:0] 99

+0x05 PLLCTRL PLLSRC[1:0] – PLLFAC[4:0] 100

+0x06 DFLLCTRL – – – – – RC32MCREF[1:0] RC2MCREF 100

+0x07 Reserved – – – – – – – –

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page
+0x00 CTRL – – – – – – – ENABLE 101

+0x01 Reserved – – – – – – – –

+0x02 CALA – CALA[6:0] 101

+0x03 CALB – – CALB[5:0] 102

+0x04 Reserved – – – – – – – –

+0x05 COMP1 COMP[7:0] 102

+0x06 COMP2 COMP[15:8] 103

+0x07 Reserved – – – – – – – –

Table 7-12. Oscillator failure interrupt vector and its word offset address PLL and external oscillator failure interrupt base.

Offset Source Interrupt Description

0x00 OSCF_vect PLL and external oscillator failure interrupt vector (NMI)
104
8331B–AVR–03/12

Atmel AVR XMEGA AU
8. Power Management and Sleep Modes

8.1 Features
• Power management for adjusting power consumption and functions
• Five sleep modes

– Idle
– Power down
– Power save
– Standby
– Extended standby

• Power reduction register to disable clock and turn off unused peripherals in active and idle
modes

8.2 Overview
Various sleep modes and clock gating are provided in order to tailor power consumption to appli-
cation requirements. This enables the XMEGA microcontroller to stop unused modules to save
power.

All sleep modes are available and can be entered from active mode. In active mode, the CPU is
executing application code. When the device enters sleep mode, program execution is stopped
and interrupts or a reset is used to wake the device again. The application code decides which
sleep mode to enter and when. Interrupts from enabled peripherals and all enabled reset
sources can restore the microcontroller from sleep to active mode.

In addition, power reduction registers provide a method to stop the clock to individual peripherals
from software. When this is done, the current state of the peripheral is frozen, and there is no
power consumption from that peripheral. This reduces the power consumption in active mode
and idle sleep modes and enables much more fine-tuned power management than sleep modes
alone.

8.3 Sleep Modes
Sleep modes are used to shut down modules and clock domains in the microcontroller in order
to save power. XMEGA microcontrollers have five different sleep modes tuned to match the typ-
ical functional stages during application execution. A dedicated sleep instruction (SLEEP) is
available to enter sleep mode. Interrupts are used to wake the device from sleep, and the avail-
able interrupt wake-up sources are dependent on the configured sleep mode. When an enabled
interrupt occurs, the device will wake up and execute the interrupt service routine before con-
tinuing normal program execution from the first instruction after the SLEEP instruction. If other,
higher priority interrupts are pending when the wake-up occurs, their interrupt service routines
will be executed according to their priority before the interrupt service routine for the wake-up
interrupt is executed. After wake-up, the CPU is halted for four cycles before execution starts.
105
8331B–AVR–03/12

Atmel AVR XMEGA AU
Table 8-1 on page 106 shows the different sleep modes and the active clock domains, oscilla-
tors, and wake-up sources.

The wake-up time for the device is dependent on the sleep mode and the main clock source.
The startup time for the system clock source must be added to the wake-up time for sleep
modes where the system clock source is not kept running. For details on the startup time for the
different oscillator options, refer to ”System Clock and Clock Options” on page 83.

The content of the register file, SRAM and registers are kept during sleep. If a reset occurs dur-
ing sleep, the device will reset, start up, and execute from the reset vector.

8.3.1 Idle Mode
In idle mode the CPU and nonvolatile memory are stopped (note that any ongoing programming
will be completed), but all peripherals, including the interrupt controller, event system and DMA
controller are kept running. Any enabled interrupt will wake the device.

8.3.2 Power-down Mode
In power-down mode, all clocks, including the real-time counter clock source, are stopped. This
allows operation only of asynchronous modules that do not require a running clock. The only
interrupts that can wake up the MCU are the two-wire interface address match interrupt, asyn-
chronous port interrupts, and the USB resume interrupt.

8.3.3 Power-save Mode
Power-save mode is identical to power down, with one exception. If the real-time counter (RTC)
is enabled, it will keep running during sleep, and the device can also wake up from either an
RTC overflow or compare match interrupt.

Table 8-1. Active clock domains and wake-up sources in the different sleep modes.

Active Clock Domain Oscillators Wake-up Sources

Sleep Modes C
P

U
 C

lo
ck

P
er

ip
h

er
al

 a
n

d
 U

S
B

 C
lo

ck

R
T

C
 C

lo
ck

S
ys

te
m

 C
lo

ck
 S

o
u

rc
e

R
T

C
 C

lo
ck

 S
o

u
rc

e

U
S

B
 R

es
u

m
e

A
sy

n
ch

ro
n

o
u

s
P

o
rt

 In
te

rr
u

p
ts

T
W

I A
d

d
re

ss
 M

at
ch

 In
te

rr
u

p
ts

R
ea

l T
im

e
C

lo
ck

 In
te

rr
u

p
ts

A
ll

In
te

rr
u

p
ts

Idle X X X X X X X X X

Power down X X X

Power save X X X X X X

Standby X X X X

Extended standby X X X X X X X
106
8331B–AVR–03/12

Atmel AVR XMEGA AU
8.3.4 Standby Mode
Standby mode is identical to power down, with the exception that the enabled system clock
sources are kept running while the CPU, peripheral, and RTC clocks are stopped. This reduces
the wake-up time.

8.3.5 Extended Standby Mode
Extended standby mode is identical to power-save mode, with the exception that the enabled
system clock sources are kept running while the CPU and peripheral clocks are stopped. This
reduces the wake-up time.

8.4 Power Reduction Registers
The power reduction (PR) registers provide a method to stop the clock to individual peripherals.
When this is done, the current state of the peripheral is frozen and the associated I/O registers
cannot be read or written. Resources used by the peripheral will remain occupied; hence, the
peripheral should be disabled before stopping the clock. Enabling the clock to a peripheral again
puts the peripheral in the same state as before it was stopped. This can be used in idle mode
and active modes to reduce the overall power consumption. In all other sleep modes, the periph-
eral clock is already stopped.

Not all devices have all the peripherals associated with a bit in the power reduction registers.
Setting a power reduction bit for a peripheral that is not available will have no effect.

8.5 Minimizing Power Consumption
There are several possibilities to consider when trying to minimize the power consumption in an
AVR MCU controlled system. In general, correct sleep modes should be selected and used to
ensure that only the modules required for the application are operating.

All unneeded functions should be disabled. In particular, the following modules may need spe-
cial consideration when trying to achieve the lowest possible power consumption.

8.5.1 Analog-to-Digital Converter - ADC
If enabled, the ADC will be enabled in all sleep modes. To save power, the ADC should be dis-
abled before entering any sleep mode. When the ADC is turned off and on again, the next
conversion will be an extended conversion. Refer to ”ADC – Analog-to-Digital Converter” on
page 356 for details on ADC operation.

8.5.2 Analog Comparator - AC
When entering idle mode, the analog comparator should be disabled if not used. In other sleep
modes, the analog comparator is automatically disabled. However, if the analog comparator is
set up to use the internal voltage reference as input, the analog comparator should be disabled
in all sleep modes. Otherwise, the internal voltage reference will be enabled, irrespective of
sleep mode. Refer to ”AC – Analog Comparator” on page 398 for details on how to configure the
analog comparator.

8.5.3 Brownout Detector
If the brownout detector is not needed by the application, this module should be turned off. If the
brownout detector is enabled by the BODLEVEL fuses, it will be enabled in all sleep modes, and
always consume power. In the deeper sleep modes, it can be turned off and set in sampled
mode to reduce current consumption. Refer to ”Brownout Detection” on page 115 for details on
how to configure the brownout detector.
107
8331B–AVR–03/12

Atmel AVR XMEGA AU
8.5.4 Watchdog Timer
If the watchdog timer is not needed in the application, the module should be turned off. If the
watchdog timer is enabled, it will be enabled in all sleep modes and, hence, always consume
power. Refer to ”WDT – Watchdog Timer” on page 128 for details on how to configure the
watchdog timer.

8.5.5 Port Pins
When entering a sleep mode, all port pins should be configured to use minimum power. Most
important is to ensure that no pins drive resistive loads. In sleep modes where the Peripheral
Clock (ClkPER) is stopped, the input buffers of the device will be disabled. This ensures that no
power is consumed by the input logic when not needed.
108
8331B–AVR–03/12

Atmel AVR XMEGA AU
8.6 Register Description – Sleep

8.6.1 CTRL – Control register

• Bit 7:4 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

• Bit 3:1 – SMODE[2:0]: Sleep Mode Selection
These bits select sleep modes according to Table 8-2 on page 109.

• Bit 0 – SEN: Sleep Enable
This bit must be set to make the MCU enter the selected sleep mode when the SLEEP instruc-
tion is executed. To avoid unintentional entering of sleep modes, it is recommended to write
SEN just before executing the SLEEP instruction and clear it immediately after waking up.

8.7 Register Description – Power Reduction

8.7.1 PRGEN – General Power Reduction register

Bit 7 6 5 4 3 2 1 0

+0x00 – – – – SMODE[2:0] SEN CTRL

Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 8-2. Sleep mode

SMODE[2:0] Group Configuration Description

000 IDLE Idle mode

001 — Reserved

010 PDOWN Power-down mode

011 PSAVE Power-save mode

100 — Reserved

101 — Reserved

110 STDBY Standby mode

111 ESTDBY Extended standby mode

Bit 7 6 5 4 3 2 1 0

+0x00 – USB – AES EBI RTC EVSYS DMA PRGEN

Read/Write R R/W R R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
109
8331B–AVR–03/12

Atmel AVR XMEGA AU
• Bit 7 – Reserved
This bit is unused and reserved for future use. For compatibility with future devices, always write
this bit to zero when this register is written.

• Bit 6 – USB: USB Module
Setting this bit stops the clock to the USB module. When this bit is cleared, the peripheral should
be reinitialized to ensure proper operation.

• Bit 5 – Reserved
This bit is unused and reserved for future use. For compatibility with future devices, always write
this bit to zero when this register is written.

• Bit 4 – AES: AES Module
Setting this bit stops the clock to the AES module. When this bit is cleared, the peripheral should
be reinitialized to ensure proper operation.

• Bit 3 – EBI: External Bus Interface
Setting this bit stops the clock to the external bus interface. When this bit is cleared, the periph-
eral should be reinitialized to ensure proper operation.

• Bit 2 – RTC: Real-Time Counter
Setting this bit stops the clock to the real-time counter. When this bit is cleared, the peripheral
should be reinitialized to ensure proper operation.

• Bit 1 – EVSYS: Event System
Setting this stops the clock to the event system. When this bit is cleared, the module will con-
tinue as before it was stopped.

• Bit 0 – DMA: DMA Controller
Setting this bit stops the clock to the DMA controller. This bit can be set only if the DMA control-
ler is disabled.

8.7.2 PRPA/B – Power Reduction Port A/B register

Note: Disabling of analog modules stops the clock to the analog blocks themselves and not only the
interfaces.

• Bit 7:3 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

• Bit 2 – DAC: Power Reduction DAC
Setting this bit stops the clock to the DAC. The DAC should be disabled before stopped.

Bit 7 6 5 4 3 2 1 0

+0x01/+0x02 – – – – – DAC ADC AC PRPA/B

Read/Write R R R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
110
8331B–AVR–03/12

Atmel AVR XMEGA AU
• Bit 1 – ADC: Power Reduction ADC
Setting this bit stops the clock to the ADC. The ADC should be disabled before stopped.

• Bit 0 – AC: Power Reduction Analog Comparator
Setting this bit stops the clock to the analog comparator. The AC should be disabled before
shutdown.

8.7.3 PRPC/D/E/F – Power Reduction Port C/D/E/F register

• Bit 7 – Reserved
This bit is unused and reserved for future use. For compatibility with future devices, always write
this bit to zero when this register is written.

• Bit 6 – TWI: Two-Wire Interface
Setting this bit stops the clock to the two-wire interface. When this bit is cleared, the peripheral
should be reinitialized to ensure proper operation.

• Bit 5 – USART1
Setting this bit stops the clock to USART1. When this bit is cleared, the peripheral should be
reinitialized to ensure proper operation.

• Bit 4 – USART0
Setting this bit stops the clock to USART0. When this bit is cleared, the peripheral should be
reinitialized to ensure proper operation.

• Bit 3 – SPI: Serial Peripheral Interface
Setting this bit stops the clock to the SPI. When this bit is cleared, the peripheral should be rein-
itialized to ensure proper operation.

• Bit 2 – HIRES: High-Resolution Extension
Setting this bit stops the clock to the high-resolution extension for the timer/counters. When this
bit is cleared, the peripheral should be reinitialized to ensure proper operation.

• Bit 1 – TC1: Timer/Counter 1
Setting this bit stops the clock to timer/counter 1. When thise bit is cleared, the peripheral will
continue like before the shut down.

• Bit 0 – TC0: Timer/Counter 0
Setting this bit stops the clock to timer/counter 0. When this bit is cleared, the peripheral will con-
tinue like before the shut down.

Bit 7 6 5 4 3 2 1 0

+0x03/+0x04/
+0x05/+0x06

– TWI USART1 USART0 SPI HIRES TC1 TC0 PRPC/D/E/F

Read/Write R R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
111
8331B–AVR–03/12

Atmel AVR XMEGA AU
8.8 Register Summary – Sleep

8.9 Register Summary – Power Reduction

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page
+0x00 CTRL – – – – SMODE[2:0] SEN 109

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page
+0x00 PRGEN – USB – AES EBI RTC EVSYS DMA 109

+0x01 PRPA – – – – – DAC ADC AC 110

+0x02 PRPB – – – – – DAC ADC AC 110

+0x03 PRPC – TWI USART1 USART0 SPI HIRES TC1 TC0 111

+0x04 PRPD – TWI USART1 USART0 SPI HIRES TC1 TC0 111

+0x05 PRPE – TWI USART1 USART0 SPI HIRES TC1 TC0 111

+0x06 PRPF – TWI USART1 USART0 SPI HIRES TC1 TC0 111
112
8331B–AVR–03/12

Atmel AVR XMEGA AU
9. Reset System

9.1 Features
• Reset the microcontroller and set it to initial state when a reset source goes active
• Multiple reset sources that cover different situations

– Power-on reset
– External reset
– Watchdog reset
– Brownout reset
– PDI reset
– Software reset

• Asynchronous operation
– No running system clock in the device is required for reset

• Reset status register for reading the reset source from the application code

9.2 Overview
The reset system issues a microcontroller reset and sets the device to its initial state. This is for
situations where operation should not start or continue, such as when the microcontroller oper-
ates below its power supply rating. If a reset source goes active, the device enters and is kept in
reset until all reset sources have released their reset. The I/O pins are immediately tri-stated.
The program counter is set to the reset vector location, and all I/O registers are set to their initial
values. The SRAM content is kept. However, if the device accesses the SRAM when a reset
occurs, the content of the accessed location can not be guaranteed.

After reset is released from all reset sources, the default oscillator is started and calibrated
before the device starts running from the reset vector address. By default, this is the lowest pro-
gram memory address, 0, but it is possible to move the reset vector to the lowest address in the
boot section.

The reset functionality is asynchronous, and so no running system clock is required to reset the
device. The software reset feature makes it possible to issue a controlled system reset from the
user software.

The reset status register has individual status flags for each reset source. It is cleared at power-
on reset, and shows which sources have issued a reset since the last power-on.

An overview of the reset system is shown in Figure 9-1 on page 114.
113
8331B–AVR–03/12

Atmel AVR XMEGA AU
Figure 9-1. Reset system overview.

9.3 Reset Sequence
A reset request from any reset source will immediately reset the device and keep it in reset as
long as the request is active. When all reset requests are released, the device will go through
three stages before the device starts running again:

• Reset counter delay

• Oscillator startup

• Oscillator calibration

If another reset requests occurs during this process, the reset sequence will start over again.

9.3.1 Reset Counter
The reset counter can delay reset release with a programmable period from when all reset
requests are released. The reset delay is timed from the 1kHz output of the ultra low power
(ULP) internal oscillator, and in addition 24 System clock (clkSYS) cycles are counted before reset
is released. The reset delay is set by the STARTUPTIME fuse bits. The selectable delays are
shown in Table 9-1.

MCU Status
Register (MCUSR)

Brown-out
ResetBODLEVEL [2:0]

Delay Counters
TIMEOUT

W
D

R
F

B
O

R
F

E
X

T
R

F

P
O

R
F

ULP
Oscillator

SPIKE
FILTER

Pull-up Resistor

JT
R

F

Watchdog
Reset

SUT[1:0]

Power-on Reset

Software
Reset

External
Reset

PDI
Reset

Table 9-1. Reset delay.

SUT[1:0] Number of 1kHz ULP Oscillator Clock Cycles Recommended Usage

00 64K ClkULP+ 24 ClkSYS Stable frequency at startup

01 4K ClkULP + 24 ClkSYS Slowly rising power

10 Reserved -

11 24 ClkSYS Fast rising power or BOD enabled
114
8331B–AVR–03/12

Atmel AVR XMEGA AU
Whenever a reset occurs, the clock system is reset and the internal 2MHz internal oscillator is
chosen as the source for ClkSYS.

9.3.2 Oscillator Startup
After the reset delay, the 2MHz internal oscillator clock is started, and its calibration values are
automatically loaded from the calibration row to the calibration registers.

9.4 Reset Sources

9.4.1 Power-on Reset
A power-on reset (POR) is generated by an on-chip detection circuit. The POR is activated when
the VCC rises and reaches the POR threshold voltage (VPOT), and this will start the reset
sequence.

The POR is also activated to power down the device properly when the VCC falls and drops
below the VPOT level.

The VPOT level is higher for falling VCCthan for rising VCC. Consult the datasheet for POR charac-
teristics data.

Figure 9-2. MCU startup, RESET tied to VCC.

Figure 9-3. MCU startup, RESET extended externally,

9.4.2 Brownout Detection
The on-chip brownout detection (BOD) circuit monitors the VCC level during operation by com-
paring it to a fixed, programmable level that is selected by the BODLEVEL fuses. If disabled,
BOD is forced on at the lowest level during chip erase and when the PDI is enabled.

V

RESET

TIME-OUT

INTERNAL
RESET

tTOUT

VPOT

VRST

CC

RESET

TIME-OUT

INTERNAL
RESET

tTOUT

VPOT

VRST

VCC
115
8331B–AVR–03/12

Atmel AVR XMEGA AU
When the BOD is enabled and VCC decreases to a value below the trigger level (VBOT- in Figure
9-4), the brownout reset is immediately activated.

When VCC increases above the trigger level (VBOT+ in Figure 9-4), the reset counter starts the
MCU after the timeout period, tTOUT, has expired.

The trigger level has a hysteresis to ensure spike free brownout detection. The hysteresis on the
detection level should be interpreted as VBOT+= VBOT + VHYST/2 and VBOT- = VBOT - VHYST/2.

The BOD circuit will detect a drop in VCC only if the voltage stays below the trigger level for lon-
ger than tBOD.

Figure 9-4. Brownout detection reset.

For BOD characterization data consult the device datasheet. The programmable BODLEVEL
setting is shown in Table 9-2.

Notes: 1. The values are nominal values only. For accurate, actual numbers, consult the device
datasheet.

2. Changing these fuse bits will have no effect until leaving programming mode.

The BOD circuit has three modes of operation:

• Disabled: In this mode, there is no monitoring of the VCC level.

Table 9-2. Programmable BODLEVEL setting.

BOD level Fuse BODLEVEL[2:0](2) VBOT
(1) Unit

BOD level 0 111 1.6

V

BOD level 1 110 1.8

BOD level 2 101 2.0

BOD level 3 100 2.2

BOD level 4 011 2.4

BOD level 5 010 2.6

BOD level 6 001 2.8

BOD level 7 000 3.0

VCC

TIME-OUT

INTERNAL
RESET

VBOT-
VBOT+

tTOUT

tBOD
116
8331B–AVR–03/12

Atmel AVR XMEGA AU
• Enabled: In this mode, the VCC level is continuously monitored, and a drop in VCC below VBOT
for a period of tBOD will give a brownout reset

• Sampled: In this mode, the BOD circuit will sample the VCC level with a period identical to
that of the 1kHz output from the ultra low power (ULP) internal oscillator. Between each
sample, the BOD is turned off. This mode will reduce the power consumption compared to
the enabled mode, but a fall in the VCC level between two positive edges of the 1kHz ULP
oscillator output will not be detected. If a brownout is detected in this mode, the BOD circuit is
set in enabled mode to ensure that the device is kept in reset until VCC is above VBOT again

The BODACT fuse determines the BOD setting for active mode and idle mode, while the
BODPD fuse determines the brownout detection setting for all sleep modes, except idle mode.

9.4.3 External Reset
The external reset circuit is connected to the external RESET pin. The external reset will trigger
when the RESET pin is driven below the RESET pin threshold voltage, VRST, for longer than the
minimum pulse period, tEXT. The reset will be held as long as the pin is kept low. The RESET pin
includes an internal pull-up resistor.

Figure 9-5. External reset characteristics.

For external reset characterization data consult the device datasheet.

9.4.4 Watchdog Reset
The watchdog timer (WDT) is a system function for monitoring correct program operation. If the
WDT is not reset from the software within a programmable timout period, a watchdog reset will
be given. The watchdog reset is active for one to two clock cycles of the 2MHz internal oscillator.

Table 9-3. BOD setting fuse decoding.

BODACT[1:0]/ BODPD[1:0] Mode

00 Reserved

01 Sampled

10 Enabled

11 Disabled

CC

tEXT
117
8331B–AVR–03/12

Atmel AVR XMEGA AU
Figure 9-6. Watchdog reset.

For information on configuration and use of the WDT, refer to the ”WDT – Watchdog Timer” on
page 128.

9.4.5 Software Reset
The software reset makes it possible to issue a system reset from software by writing to the soft-
ware reset bit in the reset control register.The reset will be issued within two CPU clock cycles
after writing the bit. It is not possible to execute any instruction from when a software reset is
requested until it is issued.

Figure 9-7. Software reset.

9.4.6 Program and Debug Interface Reset
The program and debug interface reset contains a separate reset source that is used to reset
the device during external programming and debugging. This reset source is accessible only
from external debuggers and programmers.

1-2 2MHz

CC

Cycles

1-2 2MHz

CC

Cycles
SOFTWARE
118
8331B–AVR–03/12

Atmel AVR XMEGA AU
9.5 Register Description

9.5.1 STATUS – Status register

• Bit 7:6 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

• Bit 5 – SRF: Software Reset Flag
This flag is set if a software reset occurs. The flag will be cleared by a power-on reset or by writ-
ing a one to the bit location.

• Bit 4 – PDIRF: Program and Debug Interface Reset Flag
This flag is set if a programming interface reset occurs. The flag will be cleared by a power-on
reset or by writing a one to the bit location.

• Bit 3 – WDRF: Watchdog Reset Flag
This flag is set if a watchdog reset occurs. The flag will be cleared by a power-on reset or by writ-
ing a one to the bit location.

• Bit 2 – BORF: Brownout Reset Flag
This flag is set if a brownout reset occurs. The flag will be cleared by a power-on reset or by writ-
ing a one to the bit location.

• Bit 1 – EXTRF: External Reset Flag
This flag is set if an external reset occurs. The flag will be cleared by a power-on reset or by writ-
ing a one to the bit location.

• Bit 0 – PORF: Power On Reset Flag
This flag is set if a power-on reset occurs. Writing a one to the flag will clear the bit location.

9.5.2 CTRL – Control register

• Bit 7:1 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

• Bit 0 – SWRST: Software Reset
When this bit is set, a software reset will occur. The bit is cleared when a reset is issued. This bit
is protected by the configuration change protection mechanism. For details, refer to ”Configura-
tion Change Protection” on page 13.

Bit 7 6 5 4 3 2 1 0

+0x00 – – SRF PDIRF WDRF BORF EXTRF PORF STATUS

Read/Write R R R/W R/W R/W R/W R/W R/W

Initial Value - - - - - - - -

Bit 7 6 5 4 3 2 1 0

+0x01 – – – – – – – SWRST CTRL

Read/Write R R R R R R R R/W

Initial Value 0 0 0 0 0 0 0 0
119
8331B–AVR–03/12

Atmel AVR XMEGA AU
9.6 Register Summary
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page

+0x00 STATUS – – SRF PDIRF WDRF BORF EXTRF PORF 119

+0x01 CTRL – – – – – – – SWRST 119
120
8331B–AVR–03/12

Atmel AVR XMEGA AU
10. Battery Backup System

10.1 Features
• Integrated battery backup system ensuring continuos, real-time clock during main power failure
• Battery backup power supply from dedicated VBAT pin to power:

– One 32-bit real-time counter
– One ultra low power 32.768kHz crystal oscillator with failure detection monitor
– Two battery backup registers

• Automatic power switching between main power and battery backup power:
– Switching from main power to battery backup power at main power loss
– Switching from battery backup power to main power at main power return

10.2 Overview
Many applications require a real-time clock that keeps running continuously, even in the event of
a main power loss or failure. The battery backup system includes functions for this through auto-
matic power switching between main power and a battery backup power supply. No external
components are required. Figure 10-1 on page 122 shows an overview of the system.

On devices with a battery backup system, a backup battery can be connected to the dedicated
VBAT power pin. If the main power is lost, the backup battery will continue and power the real-
time counter (RTC), a 32.768kHz crystal oscillator with failure detection monitor, and two backup
registers. The battery backup system does not provide power to other parts of the volatile mem-
ory in the device, such as SRAM and I/O registers outside the system.

The device uses its BOD to detect main power loss and switch to power from the VBAT pin. After
main power is restored, the battery back system will automatically switch back to being powered
from the main power again. The backup battery is drained only when main power is not present,
and this ensures maximum battery life.

On devices with the battery backup system, the RTC will keep running in all sleep modes.
121
8331B–AVR–03/12

Atmel AVR XMEGA AU
10.3 Battery Backup System
The battery backup system consists of a VBAT power supervisor, a power switch, a crystal oscil-
lator with failure monitor, a 32-bit real-time counter (RTC), and two backup registers.

Figure 10-1. Battery backup system and its power domain implementation.

10.3.1 Power Supervisor
The power supervisor monitors the voltage on the VBAT pin. It performs three main functions:

The power-on detection (BBPOD) function detects when power is applied to the VBAT pin, i.e.,
when the backup battery is inserted. When this happens the battery backup power-on detection
flag (BBPODF) is set and the power switch is disconnected to prevent the backup battery from
being drained before the device is configured.

The brown-out detection (BBBOD) function monitors the VBAT voltage level when the system is
powered from the VBAT pin. If the VBAT voltage drops below a threshold voltage, the battery
backup bod flag (BBBODF) is set. The BBBOD samples the VBAT voltage level at around a 1Hz
rate, and is designed for detecting slow voltage changes. The BBBOD is turned off when the
device runs from the main power.

The power detection (BBPWR) function controls the VBAT voltage after a reset. If no voltage is
present on the VBAT pin, the battery backup power flag will be set. This indicates that the backup
battery is not present or has been drained. BBPODF, BBBODF, and the BBPWR flag are later
referred to as the power supervision flags.

10.3.2 Power Switch
The power switch switches between main power and the VBAT pin to power the system. This
happens automatically, and is controlled from the main BOD in the device.

Power
switch VDDVBAT

TOSC1

TOSC2

VBAT
power

supervisor

Crystal
Oscillator

RTC

Failure
monitor

Backup
Registers

Main
power

supervision

Oscillator &
sleep

controller

FLASH,
EEPROM
& Fuses

Watchdog w/
Ooscillator

Internal
RAM

GPIO

XTAL2

XTAL1
OCD &

Programming
Interface

Level shifters / Isolation

CPU
&

Peripherals
122
8331B–AVR–03/12

Atmel AVR XMEGA AU
10.3.3 Crystal Oscillator with Failure Monitor
The crystal oscillator (XOSC) supports connection of a external 32.768kHz crystal. It provides a
prescaled clock output selectable to 1.024kHz or 1Hz. The crystal oscillator is designed for ultra
low power consumption and by default is configured for low ESR and load capacitance crystals.
It is possible to enable a high ESR mode to drive crystals with high ESR or load capacitance, but
this will increase current consumption. The crystal oscillator failure monitor will detect if the crys-
tal is permanently or temporarily stopped and then set the crystal oscillator failure flag.

10.3.4 32-bit Real-time Counter
The 32-bit real-time counter (RTC) will count each clock output from the crystal oscillator. It pro-
vides a one-millisecond or one-second resolution, depending on the crystal oscillator clock
output selection. For more details on the 32-bit RTC, refer to the ”RTC32 – 32-bit Real-Time
Counter” on page 227.

10.3.5 Backup Registers
The two backup registers can be used to store volatile data parameters when Vcc is not present.

10.4 Configuration
During device initialization, the battery backup system and RTC must be configured before they
can be used. The recommended configuration sequence is:

1. Apply a reset

2. Set the access enable bit

3. Optionally configure the oscillator output and ESR selection

4. Optionally enable the crystal oscillator failure monitor and the required delay before
continuing configuration

5. Enable the crystal oscillator

6. Wait until the crystal oscillator ready flag is set

7. Configure and enable the RTC

10.5 Operation
The main BOD monitors the main voltage (Vcc) level and controls the power switching. This
must always be enabled. In active and idle modes, the BOD must be in continuos mode. In deep
sleep modes, the BOD can be in continuos or sampled mode. The system is designed as a
power backup system for the RTC. Reset sources other than the BOD and power loss (i.e. exter-
nal reset, watchdog reset, and software reset) must be treated as a system reset. In this case,
the device state should be treated as unknown and lead to complete reinitialisation, including
battery backup system configuration.

10.5.1 Main Power Loss
When Vcc drops below the programmed BOD threshold voltage, the device will:

1. Switch the battery backup system to be powered from the VBAT pin and enable the
BBBOD.

2. Ignore any input signals to the system to prevent accidental or partial configuration.

3. Stretch the 1Hz / 1.024kHz clock signal to avoid a clock edge when switching is active.

4. Reset the part of the device not powered from the VBAT pin.

The battery backup system will continue to run as normal during the power switch and after-
wards. When main power is lost, it is not possible to access or read the status from the registers.
123
8331B–AVR–03/12

Atmel AVR XMEGA AU
10.5.2 Main Power Restore and Start-up Sequence
At every startup after main power is restored, the software should:

1. Control the main reset source to determine that a POR or BOD took place.

2. Check for power on the VBAT pin by reading the BBPWR flag.

3. Read the power supervisor flags to determine further software action:

a. If all power supervision flags are cleared, the battery backup system runs as nor-
mal. The software should enable access to the battery backup system and check
the crystal oscillator failure flag. If the flag is set, the software should assume that
the RTC counter value is invalid and take appropriate action.

b. If any power supervision flags are set, it indicates the battery backup system has
lost power sometime during the period when the rest of the device was unpower-
erd. Software should assume that the configuration and RTC value are invalid and
take appropriate action.
124
8331B–AVR–03/12

Atmel AVR XMEGA AU
10.6 Register Description

10.6.1 CTRL: Control register

• Bit 7: 6 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write this bit to zero when this register is written.

• Bit 5 – HIGHESR: High ESR Mode
Setting this bit will increase the current used to drive the crystal and increase the swing on the
TOSC2 pin. This allows use of crystals with higher load and higher ESR.

• Bit 4 – XOSCSEL: Crystal Oscillator Output Selection
This bit selects the prescaled clock output from the 32.768kHz crystal oscillator. After reset, this
bit is zero, and the 1Hz clock output is used as input for the RTC. Setting this bit will select the
1.024kHz clock output as input for the RTC32. This bit cannot be changed when XOSCEN is
set.

• Bit 3 – XOSCEN: Crystal Oscillator Enable
Setting this bit will enable the 32.768kHz crystal oscillator. Writing the bit to zero will have no
effect, and the oscillator will remain enabled until a battery backup reset is issued. The Crystal
oscillator can also be used as 32.768 kHz system clock after performing step one to three
described in ”Configuration” on page 123.

• Bit 2 – XOSCFDEN: Crystal Oscillator Failure Detection Enable
Setting this bit will enable the crystal oscillator monitor. The monitor will detect if the crystal is
stopped or loses connection temporarily. At least 64 swings must be lost before the failure
detection is triggered. Writing the bit to zero will have no effect, and the crystal oscillator monitor
will remain enabled until a battery backup reset is issued.

• Bit 1 – ACCEN: Module Access Enable
Setting this bit will enable access to the battery backup registers. After main reset, this bit must
be set in order to access (read from and write to) the battery backup registers, except for the
BBPODF, the BBBODF, and the BBPWR flags, which are always accessible. Writing this bit to
zero will have no effect; only a device reset will clear this bit.

• Bit 0 – RESET: Reset
Setting this bit will force a reset of the battery backup system lasting one peripheral clock cycle.
Writing the bit to zero will have no effect. Writing a one to XOSCEN or XOSCFDEN at the same
time will block writing to this bit. When this bit is set, HIGHESR, XOSCSEL, XOSCEN, and
XOSCFDEN in CTRL and XOSCRDY in STATUS will be cleared.

Bit 7 6 5 4 3 2 1 0

+0x00 – – HIGHESR XOSCSEL XOSCEN XOSCFDEN ACCEN RESET CTRL

Read/Write R R R/W R/W R/W R/W R/W R/W

initial Value 0 0 0 0 0 0 0 0
125
8331B–AVR–03/12

Atmel AVR XMEGA AU
This bit is protected by the Configuration Change Protection mechanism. For a detailed descrip-
tion, refer to ”Configuration Change Protection” on page 13.

10.6.2 STATUS: Status register

• Bit 7 – BBPWR: Battery Backup Power
This flag is set if no power is detected on the VBAT pin when the device leaves reset. The flag
can be cleared by writing a one to this bit location.

• Bit 6:4 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

• Bit 3 – XOSCRDY: Crystal Oscillator Ready
This flag is set when the 32.678kHz crystal oscillator has started and is stable and ready. The
flag can be cleared by applying a reset to the battery backup system. The actual start-up time is
crystal dependent. Refer to the datasheet for the crystal oscillator used for more information.

• Bit 2 – XOSCFAIL: Crystal Oscillator Failure
This flag is set if a crystal oscillator failure is detected. The flag can be cleared by writing a one
to this bit location or by applying a reset to the battery backup system.

• Bit 1 – BBBODF: Battery Backup Brown-out Detection Flag
This flag is set if battery backup BOD is detected when the battery backup system is powered
from the VBAT pin. The flag can be cleared by writing a one to this bit location. This flag is not
valid when BBPWR is set.

• Bit 0 – BBPODF: Battery Backup Power-on Detection Flag
This flag is set if battery backup power-on is detected; i.e., when power is connected to the VBAT

pin. The flag is updated only during device startup when main power is applied. Applying or
reapplying power to the VBAT pin while main power is present will not change this flag until main
power is removed and re-applied. The flag can be cleared by writing a one to this bit location.
This flag is not valid when BBPWR is set.

10.6.3 BACKUP0: Backup register 0

Bit 7 6 5 4 3 2 1 0

+0x01 BBPWR – – – XOSCRDY XOSCFAIL BBBODF BBPODF STATUS

Read/Write R/W R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 x x 0 0

Bit 7 6 5 4 3 2 1 0

+0x02 BACKUP0[7:0] BACKUP0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value x x x x x x x x
126
8331B–AVR–03/12

Atmel AVR XMEGA AU
• Bit 7:0 – BACKUP0[7:0]: Backup Register 0
This register can be used to store data in the battery backup system before the main power is
lost or removed.

10.6.4 BACKUP1: Battery Backup register 1

• Bit 7:0 – BACKUP1[7:0]: Battery Backup Register 1
This register can be used to store data in the battery backup system before the main power is
lost or removed.

10.7 Register Summary

Bit 7 6 5 4 3 2 1 0

+0x03 BACKUP1[7:0] BACKUP1

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value x x x x x x x x

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page

+0x00 CTRL – – HIGHESR XOSCSEL XOSCEN XOSCFDEN ACCEN RESET 125

+0x01 STATUS BBPWR – – – XOSCRDY OSCFAIL BBBODF BBPODF 126

+0x02 BACKUP0 BACKUP0[7:0] 126

+0x03 BACKUP1 BACKUP1[7:0] 127
127
8331B–AVR–03/12

Atmel AVR XMEGA AU
11. WDT – Watchdog Timer

11.1 Features
• Issues a device reset if the timer is not reset before its timeout period
• Asynchronous operation from dedicated oscillator
• 1kHz output of the 32kHz ultra low power oscillator
• 11 selectable timeout periods, from 8ms to 8s.
• Two operation modes:

– Normal mode
– Window mode

• Configuration lock to prevent unwanted changes

11.2 Overview
The watchdog timer (WDT) is a system function for monitoring correct program operation. It
makes it possible to recover from error situations such as runaway or deadlocked code. The
WDT is a timer, configured to a predefined timeout period, and is constantly running when
enabled. If the WDT is not reset within the timeout period, it will issue a microcontroller reset.
The WDT is reset by executing the WDR (watchdog timer reset) instruction from the application
code.

The window mode makes it possible to define a time slot or window inside the total timeout
period during which WDT must be reset. If the WDT is reset outside this window, either too early
or too late, a system reset will be issued. Compared to the normal mode, this can also catch sit-
uations where a code error causes constant WDR execution.

The WDT will run in active mode and all sleep modes, if enabled. It is asynchronous, runs from a
CPU-independent clock source, and will continue to operate to issue a system reset even if the
main clocks fail.

The configuration change protection mechanism ensures that the WDT settings cannot be
changed by accident. For increased safety, a fuse for locking the WDT settings is also available.

11.3 Normal Mode Operation
In normal mode operation, a single timeout period is set for the WDT. If the WDT is not reset
from the application code before the timeout occurs, then the WDT will issue a system reset.
There are 11 possible WDT timeout (TOWDT) periods, selectable from 8ms to 8s, and the WDT
can be reset at any time during the timeout period. A new WDT timeout period will be started
each time the WDT is reset by the WDR instruction. The default timeout period is controlled by
fuses. Normal mode operation is illustrated in Figure 11-1 on page 129.
128
8331B–AVR–03/12

Atmel AVR XMEGA AU
Figure 11-1. Normal mode operation.

11.4 Window Mode Operation
In window mode operation, the WDT uses two different timeout periods, a "closed" window time-
out period (TOWDTW) and the normal timeout period (TOWDT). The closed window timeout period
defines a duration of from 8ms to 8s where the WDT cannot be reset. If the WDT is reset during
this period, the WDT will issue a system reset. The normal WDT timeout period, which is also
8ms to 8s, defines the duration of the "open" period duirng which the WDT can (and should) be
reset. The open period will always follow the closed period, and so the total duration of the time-
out period is the sum of the closed window and the open window timeout periods. The default
closed window timeout period is controlled by fuses (both open and closed periods are con-
trolled by fuses). The window mode operation is illustrated in Figure 11-2.

Figure 11-2. Window mode operation.

11.5 Watchdog Timer Clock
The WDT is clocked from the 1kHz output from the 32kHz ultra low power (ULP) internal oscilla-
tor. Due to the ultra low power design, the oscillator is not very accurate, and so the exact
timeout period may vary from device to device. When designing software which uses the WDT,
this device-to-device variation must be kept in mind to ensure that the timeout periods used are
valid for all devices. For more information on ULP oscillator accuracy, consult the device
datasheet.
129
8331B–AVR–03/12

Atmel AVR XMEGA AU
11.6 Configuration Protection and Lock
The WDT is designed with two security mechanisms to avoid unintentional changes to the WDT
settings.

The first mechanism is the configuration change protection mechanism, employing a timed write
procedure for changing the WDT control registers. In addition, for the new configuration to be
written to the control registers, the register’s change enable bit must be written at the same time.

The second mechanism locks the configuration by setting the WDT lock fuse. When this fuse is
set, the watchdog time control register cannot be changed; hence, the WDT cannot be disabled
from software. After system reset, the WDT will resume at the configured operation. When the
WDT lock fuse is programmed, the window mode timeout period cannot be changed, but the
window mode itself can still be enabled or disabled.

11.7 Registers Description

11.7.1 CTRL – Control register

• Bits 7:6 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

• Bits 5:2 – PER[3:0]: Timeout Period
These bits determine the watchdog timeout period as a number of 1kHz ULP oscillator cycles. In
window mode operation, these bits define the open window period. The different typical timeout
periods are found in Table 11-1. The initial values of these bits are set by the watchdog timeout
period (WDP) fuses, which are loaded at power-on.

In order to change these bits, the CEN bit must be written to 1 at the same time. These bits are
protected by the configuration change protection mechanism. For a detailed description, refer to
”Configuration Change Protection” on page 13.

Bit 7 6 5 4 3 2 1 0

+0x00 – – PER[3:0] ENABLE CEN CTRL

Read/Write
(unlocked)

R R R/W R/W R/W R/W R/W R/W

Read/Write
(locked)

R R R R R R R R

Initial Value
(x = fuse)

0 0 X X X X X 0

Table 11-1. Watchdog timeout periods .

PER[3:0] Group Configuration Typical Timeout Periods

0000 8CLK 8ms

0001 16CLK 16ms

0010 32CLK 32ms

0011 64CLK 64ms

0100 128CLK 0.128s

0101 256CLK 0.256s
130
8331B–AVR–03/12

Atmel AVR XMEGA AU
Note: Reserved settings will not give any timeout.

• Bit 1 – ENABLE: Enable
This bit enables the WDT. Clearing this bit disables the watchdog timer.

In order to change this bit, the CEN bit in ”CTRL – Control register” on page 130 must be written
to one at the same time. This bit is protected by the configuration change protection mechanism,
For a detailed description, refer to ”Configuration Change Protection” on page 13.

• Bit 0 – CEN: Change Enable
This bit enables the ability to change the configuration of the ”CTRL – Control register” on page
130. When writing a new value to this register, this bit must be written to one at the same time for
the changes to take effect. This bit is protected by the configuration change protection mecha-
nism. For a detailed description, refer to ”Configuration Change Protection” on page 13.

11.7.2 WINCTRL – Window Mode Control register

• Bit 7:6 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

• Bit 5:2 – WPER[3:0]: Window Mode Timeout Period
These bits determine the closed window period as a number of 1kHz ULP oscillator cycles in
window mode operation. The typical different closed window periods are found in Table 11-2.

0110 512CLK 0.512s

0111 1KCLK 1.0s

1000 2KCLK 2.0s

1001 4KCLK 4.0s

1010 8KCLK 8.0s

1011 Reserved

1100 Reserved

1101 Reserved

1110 Reserved

1111 Reserved

Table 11-1. Watchdog timeout periods (Continued).

PER[3:0] Group Configuration Typical Timeout Periods

Bit 7 6 5 4 3 2 1 0

+0x01 – – WPER[3:0] WEN WCEN WINCTRL

Read/Write
(unlocked)

R R R/W R/W R/W R/W R/W R/W

Read/Write
(locked)

R R R R R R R/W R/W

Initial Value
(x = fuse)

0 0 X X X X X 0
131
8331B–AVR–03/12

Atmel AVR XMEGA AU
The initial values of these bits are set by the watchdog window timeout period (WDWP) fuses,
and are loaded at power-on. In normal mode these bits are not in use.

In order to change these bits, the WCEN bit must be written to one at the same time. These bits
are protected by the configuration change protection mechanism. For a detailed description,
refer to ”Configuration Change Protection” on page 13.

Note: Reserved settings will not give any timeout for the window.

• Bit 1 – WEN: Window Mode Enable
This bit enables the window mode. In order to change this bit, the WCEN bit in ”WINCTRL –
Window Mode Control register” on page 131 must be written to one at the same time. This bit is
protected by the configuration change protection mechanism. For a detailed description, refer to
”Configuration Change Protection” on page 13.

• Bit 0 – WCEN: Window Mode Change Enable
This bit enables the ability to change the configuration of the ”WINCTRL – Window Mode Control
register” on page 131. When writing a new value to this register, this bit must be written to one at
the same time for the changes to take effect. This bit is protected by the configuration change
protection mechanism, but not protected by the WDT lock fuse.

Table 11-2. Watchdog closed window periods

WPER[3:0] Group Configuration Typical Closed Window Periods

0000 8CLK 8ms

0001 16CLK 16ms

0010 32CLK 32ms

0011 64CLK 64ms

0100 128CLK 0.128s

0101 256CLK 0.256s

0110 512CLK 0.512s

0111 1KCLK 1.0s

1000 2KCLK 2.0s

1001 4KCLK 4.0s

1010 8KCLK 8.0s

1011 Reserved

1100 Reserved

1101 Reserved

1110 Reserved

1111 Reserved
132
8331B–AVR–03/12

Atmel AVR XMEGA AU
11.7.3 STATUS – Status register

• Bit 7:1 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

• Bit 0 – SYNCBUSY: Synchronization Busy Flag
This flag is set after writing to the CTRL or WINCTRL registers and the data are being synchro-
nized from the system clock to the WDT clock domain. This bit is automatically cleared after the
synchronization is finished. Synchronization will take place only when the ENABLE bit for the
Watchdog Timer is set.

11.8 Register Summary

Bit 7 6 5 4 3 2 1 0

+0x02 – – – – – – – SYNCBUSY STATUS

Read/Write R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page
+0x00 CTRL – – PER[3:0] ENABLE CEN 130

+0x01 WINCTRL – – WPER[3:0] WEN WCEN 131

+0x02 STATUS – – – – – – – SYNCBUSY 133
133
8331B–AVR–03/12

Atmel AVR XMEGA AU
12. Interrupts and Programmable Multilevel Interrupt Controller

12.1 Features
• Short and predictable interrupt response time
• Separate interrupt configuration and vector address for each interrupt
• Programmable multilevel interrupt controller

– Interrupt prioritizing according to level and vector address
– Three selectable interrupt levels for all interrupts: low, medium and high
– Selectable, round-robin priority scheme within low-level interrupts
– Non-maskable interrupts for critical functions

• Interrupt vectors optionally placed in the application section or the boot loader section

12.2 Overview
Interrupts signal a change of state in peripherals, and this can be used to alter program execu-
tion. Peripherals can have one or more interrupts, and all are individually enabled and
configured. When an interrupt is enabled and configured, it will generate an interrupt request
when the interrupt condition is present. The programmable multilevel interrupt controller (PMIC)
controls the handling and prioritizing of interrupt requests. When an interrupt request is acknowl-
edged by the PMIC, the program counter is set to point to the interrupt vector, and the interrupt
handler can be executed.

All peripherals can select between three different priority levels for their interrupts: low, medium,
and high. Interrupts are prioritized according to their level and their interrupt vector address.
Medium-level interrupts will interrupt low-level interrupt handlers. High-level interrupts will inter-
rupt both medium- and low-level interrupt handlers. Within each level, the interrupt priority is
decided from the interrupt vector address, where the lowest interrupt vector address has the
highest interrupt priority. Low-level interrupts have an optional round-robin scheduling scheme to
ensure that all interrupts are serviced within a certain amount of time.

Non-maskable interrupts (NMI) are also supported, and can be used for system critical
functions.

12.3 Operation
Interrupts must be globally enabled for any interrupts to be generated. This is done by setting
the global interrupt enable (I) bit in the CPU status register. The I bit will not be cleared when an
interrupt is acknowledged. Each interrupt level must also be enabled before interrupts with the
corresponding level can be generated.

When an interrupt is enabled and the interrupt condition is present, the PMIC will receive the
interrupt request. Based on the interrupt level and interrupt priority of any ongoing interrupts, the
interrupt is either acknowledged or kept pending until it has priority. When the interrupt request
is acknowledged, the program counter is updated to point to the interrupt vector. The interrupt
vector is normally a jump to the interrupt handler; the software routine that handles the interrupt.
After returning from the interrupt handler, program execution continues from where it was before
the interrupt occurred. One instruction is always executed before any pending interrupt is
served.

The PMIC status register contains state information that ensures that the PMIC returns to the
correct interrupt level when the RETI (interrupt return) instruction is executed at the end of an
interrupt handler. Returning from an interrupt will return the PMIC to the state it had before enter-
ing the interrupt. The status register (SREG) is not saved automatically upon an interrupt
134
8331B–AVR–03/12

Atmel AVR XMEGA AU
request. The RET (subroutine return) instruction cannot be used when returning from the inter-
rupt handler routine, as this will not return the PMIC to its correct state.

Figure 12-1. Interrupt controller overview

12.4 Interrupts
All interrupts and the reset vector each have a separate program vector address in the program
memory space. The lowest address in the program memory space is the reset vector. All inter-
rupts are assigned individual control bits for enabling and setting the interrupt level, and this is
set in the control registers for each peripheral that can generate interrupts. Details on each inter-
rupt are described in the peripheral where the interrupt is available.

All interrupts have an interrupt flag associated with it. When the interrupt condition is present,
the interrupt flag will be set, even if the corresponding interrupt is not enabled. For most inter-
rupts, the interrupt flag is automatically cleared when executing the interrupt vector. Writing a
logical one to the interrupt flag will also clear the flag. Some interrupt flags are not cleared when
executing the interrupt vector, and some are cleared automatically when an associated register
is accessed (read or written). This is described for each individual interrupt flag.

If an interrupt condition occurs while another, higher priority interrupt is executing or pending, the
interrupt flag will be set and remembered until the interrupt has priority. If an interrupt condition
occurs while the corresponding interrupt is not enabled, the interrupt flag will be set and remem-
bered until the interrupt is enabled or the flag is cleared by software. Similarly, if one or more
interrupt conditions occur while global interrupts are disabled, the corresponding interrupt flag
will be set and remembered until global interrupts are enabled. All pending interrupts are then
executed according to their order of priority.

Interrupts can be blocked when executing code from a locked section; e.g., when the boot lock
bits are programmed. This feature improves software security. Refer to ”Memory Programming”
on page 431 for details on lock bit settings.

Interrupts are automatically disabled for up to four CPU clock cycles when the configuration
change protection register is written with the correct signature. Refer to ”Configuration Change
Protection” on page 13 for more details.

Peripheral 1

Interrupt Controller

INT REQ

INT LEVEL

INT REQ

INT LEVEL
CPU INT REQ

CTRL
LEVEL Enable

CPU.SREG

Global
Interrupt
Enable

Priority
decoder

STATUS
INTPRI

INT ACK

INT ACK

Peripheral n

INT LEVEL

INT REQ

INT ACK

CPU
CPU INT ACK

CPU ”RETI”

Sleep
Controller

Wake-up
135
8331B–AVR–03/12

Atmel AVR XMEGA AU
12.4.1 NMI – Non-Maskable Interrupts
Which interrupts represent NMI and which represent regular interrupts cannot be selected. Non-
maskable interrupts must be enabled before they can be used. Refer to the device datasheet for
NMI present on each device.

An NMI will be executed regardless of the setting of the I bit, and it will never change the I bit. No
other interrupts can interrupt a NMI handler. If more than one NMI is requested at the same time,
priority is static according to the interrupt vector address, where the lowest address has highest
priority.

12.4.2 Interrupt Response Time
The interrupt response time for all the enabled interrupts is three CPU clock cycles, minimum;
one cycle to finish the ongoing instruction and two cycles to store the program counter to the
stack. After the program counter is pushed on the stack, the program vector for the interrupt is
executed. The jump to the interrupt handler takes three clock cycles.

If an interrupt occurs during execution of a multicycle instruction, this instruction is completed
before the interrupt is served. See Figure 12-2 on page 137 for more details.
136
8331B–AVR–03/12

Atmel AVR XMEGA AU
Figure 12-2. Interrupt execution of a multicycle instruction.

If an interrupt occurs when the device is in sleep mode, the interrupt execution response time is
increased by five clock cycles. In addition, the response time is increased by the start-up time
from the selected sleep mode.

A return from an interrupt handling routine takes four to five clock cycles, depending on the size
of the program counter. During these clock cycles, the program counter is popped from the stack
and the stack pointer is incremented.
137
8331B–AVR–03/12

Atmel AVR XMEGA AU
12.5 Interrupt level
The interrupt level is independently selected for each interrupt source. For any interrupt request,
the PMIC also receives the interrupt level for the interrupt. The interrupt levels and their corre-
sponding bit values for the interrupt level configuration of all interrupts is shown in Table 12-1.

The interrupt level of an interrupt request is compared against the current level and status of the
interrupt controller. An interrupt request of a higher level will interrupt any ongoing interrupt han-
dler from a lower level interrupt. When returning from the higher level interrupt handler, the
execution of the lower level interrupt handler will continue.

12.6 Interrupt priority
Within each interrupt level, all interrupts have a priority. When several interrupt requests are
pending, the order in which interrupts are acknowledged is decided both by the level and the pri-
ority of the interrupt request. Interrupts can be organized in a static or dynamic (round-robin)
priority scheme. High- and medium-level interrupts and the NMI will always have static priority.
For low-level interrupts, static or dynamic priority scheduling can be selected.

12.6.1 Static priority
Interrupt vectors (IVEC) are located at fixed addresses. For static priority, the interrupt vector
address decides the priority within one interrupt level, where the lowest interrupt vector address
has the highest priority. Refer to the device datasheet for the interrupt vector table with the base
address for all modules and peripherals with interrupt capability. Refer to the interrupt vector
summary of each module and peripheral in this manual for a list of interrupts and their corre-
sponding offset address within the different modules and peripherals.

Table 12-1. Interrupt levels.

Interrupt Level
Configuration Group Configuration Description

00 OFF Interrupt disabled.

01 LO Low-level interrupt

10 MED Medium-level interrupt

11 HI High-level interrupt
138
8331B–AVR–03/12

Atmel AVR XMEGA AU
Figure 12-3. Static priority.

12.6.2 Round-robin Scheduling
To avoid the possible starvation problem for low-level interrupts with static priority, where some
interrupts might never be served, the PMIC offers round-robin scheduling for low-level interrupts.
When round-robin scheduling is enabled, the interrupt vector address for the last acknowledged
low-level interrupt will have the lowest priority the next time one or more interrupts from the low
level is requested.

Figure 12-4. Round-robin scheduling.

IVEC 0

:
:
:

IVEC x

IVEC x+1

:
:
:

IVEC N Lowes t Priority

Highes t PriorityLowest Address

Highes t Address

Highest Priority

IVEC 0

:
:
:

IVEC x

IVEC x+1

:
:
:

IVEC N

IVEC 0

:
:
:

IVEC x

IVEC x+1

:
:
:

IVEC N

Highest Priority

Low est Priority

IVEC x+2

IVEC x+1 las t acknow ledged
interrupt

Low est Priority

IVEC x las t acknow ledged
interrupt
139
8331B–AVR–03/12

Atmel AVR XMEGA AU
12.7 Interrupt vector locations
Table 12-2 on page 140 shows reset and Interrupt vectors placement for the various combina-
tions of BOOTRST and IVSEL settings. If the program never enables an interrupt source, the
Interrupt Vectors are not used, and regular program code can be placed at these locations. This
is also the case if the Reset Vector is in the Application section while the Interrupt Vectors are in
the Boot section or vice versa.

Table 12-2. Reset and Interrupt vectors placement

BOOTRST IVSEL Reset Address Interrupt Vectors Start Address

1 0 0x0000 0x0002

1 1 0x0000 Boot Reset Address + 0x0002

0 0 Boot Reset Address 0x0002

0 1 Boot Reset Address Boot Reset Address + 0x0002
140
8331B–AVR–03/12

Atmel AVR XMEGA AU
12.8 Register Description

12.8.1 STATUS – Status register

• Bit 7 – NMIEX: Non-Maskable Interrupt Executing
This flag is set if a non-maskable interrupt is executing. The flag will be cleared when returning
(RETI) from the interrupt handler.

• Bit 6:3 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

• Bit 2 – HILVLEX: High-level Interrupt Executing
This flag is set when a high-level interrupt is executing or when the interrupt handler has been
interrupted by an NMI. The flag will be cleared when returning (RETI) from the interrupt handler.

• Bit 1 – MEDLVLEX: Medium-level Interrupt Executing
This flag is set when a medium-level interrupt is executing or when the interrupt handler has
been interrupted by an interrupt from higher level or an NMI. The flag will be cleared when
returning (RETI) from the interrupt handler.

• Bit 0 – LOLVLEX: Low-level Interrupt Executing
This flag is set when a low-level interrupt is executing or when the interrupt handler has been
interrupted by an interrupt from higher level or an NMI. The flag will be cleared when returning
(RETI) from the interrupt handler.

12.8.2 INTPRI – Interrupt priority register

• Bit 7:0 – INTPRI: Interrupt Priority
When round-robin scheduling is enabled, this register stores the interrupt vector of the last
acknowledged low-level interrupt. The stored interrupt vector will have the lowest priority the
next time one or more low-level interrupts are pending. The register is accessible from software
to change the priority queue. This register is not reinitialized to its initial value if round-robing
scheduling is disabled, and so if default static priority is needed, the register must be written to
zero.

Bit 7 6 5 4 3 2 1 0

+0x00 NMIEX – – – – HILVLEX MEDLVLEX LOLVLEX STATUS

Read/Write R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x01 INTPRI[7:0] INTPRI

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
141
8331B–AVR–03/12

Atmel AVR XMEGA AU
12.8.3 CTRL – Control register

• Bit 7 – RREN: Round-robin Scheduling Enable
When the RREN bit is set, the round-robin scheduling scheme is enabled for low-level interrupts.
When this bit is cleared, the priority is static according to interrupt vector address, where the low-
est address has the highest priority.

• Bit 6 – IVSEL: Interrupt Vector Select
When the IVSEL bit is cleared (zero), the interrupt vectors are placed at the start of the applica-
tion section in flash. When this bit is set (one), the interrupt vectors are placed in the beginning
of the boot section of the flash. Refer to the device datasheet for the absolute address.

This bit is protected by the configuration change protection mechanism. Refer to ”Configuration
Change Protection” on page 13 for details.

• Bit 5:3 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

• Bit 2 – HILVLEN: High-level Interrupt Enable (1)

When this bit is set, all high-level interrupts are enabled. If this bit is cleared, high-level interrupt
requests will be ignored.

• Bit 1 – MEDLVLEN: Medium-level Interrupt Enable(1)

When this bit is set, all medium-level interrupts are enabled. If this bit is cleared, medium-level
interrupt requests will be ignored.

• Bit 0 – LOLVLEN: Low-level Interrupt Enable(1)

When this bit is set, all low-level interrupts are enabled. If this bit is cleared, low-level interrupt
requests will be ignored.

Note: 1. Ignoring interrupts will be effective one cycle after the bit is cleared.

12.9 Register Summary

Bit 7 6 5 4 3 2 1 0

+0x02 RREN IVSEL – – – HILVLEN MEDLVLEN LOLVLEN CTRL

Read/Write R/W R/W R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page
+0x00 STATUS NMIEX – – – – HILVLEX MEDLVLEX LOLVLEX 141

+0x01 INTPRI INTPRI[7:0] 141

+0x02 CTRL RREN IVSEL – – – HILVLEN MEDLVLEN LOLVLEN 142
142
8331B–AVR–03/12

Atmel AVR XMEGA AU
13. I/O Ports

13.1 Features
• General purpose input and output pins with individual configuration
• Output driver with configurable driver and pull settings:

– Totem-pole
– Wired-AND
– Wired-OR
– Bus-keeper
– Inverted I/O

• Input with synchronous and/or asynchronous sensing with interrupts and events
– Sense both edges
– Sense rising edges
– Sense falling edges
– Sense low level

• Optional pull-up and pull-down resistor on input and Wired-OR/AND configurations
• Optional slew rate control
• Asynchronous pin change sensing that can wake the device from all sleep modes
• Two port interrupts with pin masking per I/O port
• Efficient and safe access to port pins

– Hardware read-modify-write through dedicated toggle/clear/set registers
– Configuration of multiple pins in a single operation
– Mapping of port registers into bit-accessible I/O memory space

• Peripheral clocks output on port pin
• Real-time counter clock output to port pin
• Event channels can be output on port pin
• Remapping of digital peripheral pin functions

– Selectable USART, SPI, and timer/counter input/output pin locations

13.2 Overview
AVR XMEGA microcontrollers have flexible general purpose I/O ports. One port consists of up to
eight port pins: pin 0 to 7. Each port pin can be configured as input or output with configurable
driver and pull settings. They also implement synchronous and asynchronous input sensing with
interrupts and events for selectable pin change conditions. Asynchronous pin-change sensing
means that a pin change can wake the device from all sleep modes, included the modes where
no clocks are running.

All functions are individual and configurable per pin, but several pins can be configured in a sin-
gle operation. The pins have hardware read-modify-write (RMW) functionality for safe and
correct change of drive value and/or pull resistor configuration. The direction of one port pin can
be changed without unintentionally changing the direction of any other pin.

The port pin configuration also controls input and output selection of other device functions. It is
possible to have both the peripheral clock and the real-time clock output to a port pin, and avail-
able for external use. The same applies to events from the event system that can be used to
synchronize and control external functions. Other digital peripherals, such as USART, SPI, and
timer/counters, can be remapped to selectable pin locations in order to optimize pin-out versus
application needs.
143
8331B–AVR–03/12

Atmel AVR XMEGA AU
Figure 13-1 on page 144 shows the I/O pin functionality and the registers that are available for
controlling a pin.

Figure 13-1. General I/O pin functionality.

13.3 I/O Pin Use and Configuration
Each port has one data direction (DIR) register and one data output value (OUT) register that
are used for port pin control. The data input value (IN) register is used for reading the port pins.
In addition, each pin has a pin configuration (PINnCTRL) register for additional pin configuration.

Direction of the pin is decided by the DIRn bit in the DIR register. If DIRn is written to one, pin n
is configured as an output pin. If DIRn is written to zero, pin n is configured as an input pin.

When direction is set as output, the OUTn bit in OUT is used to set the value of the pin. If OUTn
is written to one, pin n is driven high. If OUTn is written to zero, pin n is driven low.

The IN register is used for reading pin values. A pin value can always be read regardless of
whether the pin is configured as input or output, except if digital input is disabled.

The I/O pins are tri-stated when a reset condition becomes active, even if no clocks are running.

DQ

R

DQ

R

Synchronizer

D Q

R

D Q

R

DIRn

OUTn

PINnCTRL

INn

Pxn

D Q

R

C
o
n
t
r
o
l

L
o
g
i
c

Input Disable

Wired AND/OR
Slew Rate Limit

Digital Input Pin

Analog Input/Output

Inverted I/O

Pull Enable

Pull Keep

Pull Direction
144
8331B–AVR–03/12

Atmel AVR XMEGA AU
The pin n configuration (PINnCTRL) register is used for additional I/O pin configuration. A pin
can be set in a totem-pole, wired-AND, or wired-OR configuration. It is also possible to enable
inverted input and output for a pin.

A totem-pole output has four possible pull configurations: totem-pole (push-pull), pull-down, pull-
up, and bus-keeper. The bus-keeper is active in both directions. This is to avoid oscillation when
disabling the output. The totem-pole configurations with pull-up and pull-down have active resis-
tors only when the pin is set as input. This feature eliminates unnecessary power consumption.
For wired-AND and wired-OR configuration, the optional pull-up and pull-down resistors are
active in both input and output directions.

Since pull configuration is configured through the pin configuration register, all intermediate port
states during switching of the pin direction and pin values are avoided.

The I/O pin configurations are summarized with simplified schematics in Figure 13-2 on page
145 to Figure 13-7 on page 147.

13.3.1 Totem-pole
In the totem-pole (push-pull) configuration, the pin is driven low or high according to the corre-
sponding bit setting in the OUT register. In this configuration, there is no current limitation for
sink or source other than what the pin is capable of. If the pin is configured for input, the pin will
float if no external pull resistor is connected.

Figure 13-2. I/O pin configuration - Totem-pole (push-pull).

13.3.1.1 Totem-pole with Pull-down
In this mode, the configuration is the same as for totem-pole mode, expect the pin is configured
with an internal pull-down resistor when set as input.

Figure 13-3. I/O pin configuration - Totem-pole with pull-down (on input).

INn

OUTn

DIRn

Pn

INn

OUTn

DIRn

Pn
145
8331B–AVR–03/12

Atmel AVR XMEGA AU
13.3.1.2 Totem-pole with Pull-up
In this mode, the configuration is as for totem-pole, expect the pin is configured with internal pull-
up when set as input.

Figure 13-4. I/O pin configuration - Totem-pole with pull-up (on input).

13.3.2 Bus-keeper
In the bus-keeper configuration, it provides a weak bus-keeper that will keep the pin at its logic
level when the pin is no longer driven to high or low. If the last level on the pin/bus was 1, the
bus-keeper configuration will use the internal pull resistor to keep the bus high. If the last logic
level on the pin/bus was 0, the bus-keeper will use the internal pull resistor to keep the bus low.

Figure 13-5. I/O pin configuration - Totem-pole with bus-keeper.

13.3.3 Wired-OR
In the wired-OR configuration, the pin will be driven high when the corresponding bits in the OUT
and DIR registers are written to one. When the OUT register is set to zero, the pin is released,
allowing the pin to be pulled low with the internal or an external pull-resistor. If internal pull-down
is used, this is also active if the pin is set as input.

INn

OUTn

DIRn

Pn

INn

OUTn

DIRn

Pn
146
8331B–AVR–03/12

Atmel AVR XMEGA AU
Figure 13-6. Output configuration - Wired-OR with optional pull-down.

13.3.4 Wired-AND
In the wired-AND configuration, the pin will be driven low when the corresponding bits in the
OUT and DIR registers are written to zero. When the OUT register is set to one, the pin is
released allowing the pin to be pulled high with the internal or an external pull-resistor. If internal
pull-up is used, this is also active if the pin is set as input.

Figure 13-7. Output configuration - Wired-AND with optional pull-up.

13.4 Reading the Pin Value
Independent of the pin data direction, the pin value can be read from the IN register, as shown in
Figure 13-1 on page 144. If the digital input is disabled, the pin value cannot be read. The IN
register bit and the preceding flip-flop constitute a synchronizer. The synchronizer introduces a
delay on the internal signal line. Figure 13-8 on page 148 shows a timing diagram of the syn-
chronization when reading an externally applied pin value. The maximum and minimum
propagation delays are denoted as tpd,max and tpd,min, respectively.

INn

OUTn

Pn

INn

OUTn

Pn
147
8331B–AVR–03/12

Atmel AVR XMEGA AU
Figure 13-8. Synchronization when reading a pin value.

13.5 Input Sense Configuration
Input sensing is used to detect an edge or level on the I/O pin input. The different sense configu-
rations that are available for each pin are detection of a rising edge, falling edge, or any edge or
detection of a low level. High level can be detected by using the inverted input configuration.
Input sensing can be used to trigger interrupt requests (IREQ) or events when there is a change
on the pin.

The I/O pins support synchronous and asynchronous input sensing. Synchronous sensing
requires the presence of the peripheral clock, while asynchronous sensing does not require any
clock.

Figure 13-9. Input sensing.

PERIPHERAL CLK

INSTRUCTIONS

SYNCHRONIZER FLIPFLOP

IN

r17

xxx xxx lds r17, PORTx+IN

tpd, max

tpd, min

0x00 0xFF

INVERTED I/O

Interrupt
Control IREQ

Event

Pn

D Q

R

D Q

R

Synchronizer
INn

EDGE
DETECT

Asynchronous sensing

Synchronous sensing

EDGE
DETECT
148
8331B–AVR–03/12

Atmel AVR XMEGA AU
13.6 Port Interrupt
Each port has two interrupt vectors, and it is configurable which pins on the port will trigger each
interrupt. Port interrupts must be enabled before they can be used. Which sense configurations
can be used to generate interrupts is dependent on whether synchronous or asynchronous input
sensing is available for the selected pin.

For synchronous sensing, all sense configurations can be used to generate interrupts. For edge
detection, the changed pin value must be sampled once by the peripheral clock for an interrupt
request to be generated.

For asynchronous sensing, only port pin 2 on each port has full asynchronous sense support.
This means that for edge detection, pin 2 will detect and latch any edge and it will always trigger
an interrupt request. The other port pins have limited asynchronous sense support. This means
that for edge detection, the changed value must be held until the device wakes up and a clock is
present. If the pin value returns to its initial value before the end of the device wake-up time, the
device will still wake up, but no interrupt request will be generated.

A low level can always be detected by all pins, regardless of a peripheral clock being present or
not. If a pin is configured for low-level sensing, the interrupt will trigger as long as the pin is held
low. In active mode, the low level must be held until the completion of the currently executing
instruction for an interrupt to be generated. In all sleep modes, the low level must be kept until
the end of the device wake-up time for an interrupt to be generated. If the low level disappears
before the end of the wake-up time, the device will still wake up, but no interrupt will be
generated.

Table 13-1, Table 13-2, and Table 13-3 on page 150 summarize when interrupts can be trig-
gered for the various input sense configurations.

Table 13-1. Synchronous sense support.

Sense Settings Supported Interrupt Description

Rising edge Yes Always triggered

Falling edge Yes Always triggered

Any edge Yes Always triggered

Low level Yes Pin level must be kept unchanged during wake up

Table 13-2. Full asynchronous sense support.

Sense Settings Supported Interrupt Description

Rising edge Yes Always triggered

Falling edge Yes Always triggered

Both edges Yes Always triggered

Low level Yes Pin level must be kept unchanged during wake up
149
8331B–AVR–03/12

Atmel AVR XMEGA AU

13.7 Port Event
Port pins can generate an event when there is a change on the pin. The sense configurations
decide the conditions for each pin to generate events. Event generation requires the presence of
a peripheral clock, and asynchronous event generation is not possible. For edge sensing, the
changed pin value must be sampled once by the peripheral clock for an event to be generated.

For level sensing, a low-level pin value will not generate events, and a high-level pin value will
continuously generate events. For events to be generated on a low level, the pin configuration
must be set to inverted I/O.

13.8 Alternate Port Functions
Most port pins have alternate pin functions in addition to being a general purpose I/O pin. When
an alternate function is enabled, it might override the normal port pin function or pin value. This
happens when other peripherals that require pins are enabled or configured to use pins. If and
how a peripheral will override and use pins is described in the section for that peripheral.

The port override signals and related logic (grey) are shown in Figure 13-10 on page 151. These
signals are not accessible from software, but are internal signals between the overriding periph-
eral and the port pin.

Table 13-3. Limited asynchronous sense support.

Sense Settings Supported Interrupt Description

Rising edge No -

Falling edge No -

Any edge Yes Pin value must be kept unchanged during wake up

Low level Yes Pin level must be kept unchanged during wake up

Table 13-4. Event sense support.

Sense Settings Signal event Data event

Rising edge Rising edge Pin value

Falling edge Falling edge Pin value

Both edge Any edge Pin value

Low level Pin value Pin value
150
8331B–AVR–03/12

Atmel AVR XMEGA AU
Figure 13-10. Port override signals and related logic.

13.9 Slew Rate Control
Slew rate control can be enabled for all I/O pins individually. Enabling the slew rate limiter will
typically increase the rise/fall time by 50% to 150%, depending on operating conditions and load.
For information about the characteristics of the slew rate limiter, please refer to the device
datasheet.

13.10 Clock and Event Output
It is possible to output the peripheral clock and event channel 0 events to a pin. This can be
used to clock, control, and synchronize external functions and hardware to internal device tim-
ing. The output port pin is selectable. If an event occurs, it remains visible on the port pin as long
as the event lasts; normally one peripheral clock cycle.

DQ

R

DQ

R

Synchronizer

D Q

R

D Q

R

DIRn

OUTn

PINnCTRL

INn

Pxn

D Q

R

C
o
n
t
r
o
l

L
o
g
i
c

Digital Input Disable (DID)

Wired AND/OR
Slew Rate Limit

Digital Input Pin

Analog Input/Output

Inverted I/O

Pull Enable

Pull Keep

Pull Direction

DID Override Enable

DID Override Value

OUT Override Enable

OUT Override Value

DIR Override Enable

DIR Override Value
151
8331B–AVR–03/12

Atmel AVR XMEGA AU
13.11 Multi-pin configuration
The multi-pin configuration function is used to configure multiple port pins using a single write
operation to only one of the port pin configuration registers. A mask register decides which port
pin is configured when one port pin register is written, while avoiding several pins being written
the same way during identical write operations.

13.12 Virtual Ports
Virtual port registers allow the port registers to be mapped virtually in the bit-accessible I/O
memory space. When this is done, writing to the virtual port register will be the same as writing
to the real port register. This enables the use of I/O memory-specific instructions, such as bit-
manipulation instructions, on a port register that normally resides in the extended I/O memory
space. There are four virtual ports, and so four ports can be mapped at the same time.
152
8331B–AVR–03/12

Atmel AVR XMEGA AU
13.13 Register Descriptions – Ports

13.13.1 DIR – Data Direction register

• Bit 7:0 – DIR[7:0]: Data Direction
This register sets the data direction for the individual pins of the port. If DIRn is written to one,
pin n is configured as an output pin. If DIRn is written to zero, pin n is configured as an input pin.

13.13.2 DIRSET – Data Direction Set Register

• Bit 7:0 – DIRSET[7:0]: Port Data Direction Set
This register can be used instead of a read-modify-write to set individual pins as output. Writing
a one to a bit will set the corresponding bit in the DIR register. Reading this register will return
the value of the DIR register.

13.13.3 DIRCLR – Data Direction Clear register

• Bit 7:0 – DIRCLR[7:0]: Port Data Direction Clear
This register can be used instead of a read-modify-write to set individual pins as input. Writing a
one to a bit will clear the corresponding bit in the DIR register. Reading this register will return
the value of the DIR register.

13.13.4 DIRTGL – Data Direction Toggle register

Bit 7 6 5 4 3 2 1 0

+0x00 DIR[7:0] DIR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x01 DIRSET[7:0] DIRSET

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x02 DIRCLR[7:0] DIRCLR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x03 DIRTGL[7:0] DIRTGL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
153
8331B–AVR–03/12

Atmel AVR XMEGA AU
• Bit 7:0 – DIRTGL[7:0]: Port Data Direction Toggle
This register can be used instead of a read-modify-write to toggle the direction of individual pins.
Writing a one to a bit will toggle the corresponding bit in the DIR register. Reading this register
will return the value of the DIR register.

13.13.5 OUT – Data Output Value

• Bit 7:0 – OUT[7:0]: Port Data Output value
This register sets the data output value for the individual pins of the port. If OUTn is written to
one, pin n is driven high. If OUTn is written to zero, pin n is driven low. For this setting to have
any effect, the pin direction must be set as output.

13.13.6 OUTSET – Data Output Value Set register

• Bit 7:0 – OUTSET[7:0]: Data Output Value Set
This register can be used instead of a read-modify-write to set the output value of individual pins
to one. Writing a one to a bit will set the corresponding bit in the OUT register. Reading this reg-
ister will return the value in the OUT register.

13.13.7 OUTCLR – Data Output Value Clear Register

• Bit 7:0 – OUTCLR[7:0]: Data Output Value Clear
This register can be used instead of a read-modify-write to set the output value of individual pins
to zero. Writing a one to a bit will clear the corresponding bit in the OUT register. Reading this
register will return the value in the OUT register.

Bit 7 6 5 4 3 2 1 0

+0x04 OUT[7:0] OUT

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x05 OUTSET[7:0] OUTSET

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x06 OUTCLR[7:0] OUTCLR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
154
8331B–AVR–03/12

Atmel AVR XMEGA AU
13.13.8 OUTTGL – Data Output Value Toggle register

• Bit 7:0 – OUTTGL[7:0]: Port Data Output Value Toggle
This register can be used instead of a read-modify-write to toggle the output value of individual
pins. Writing a one to a bit will toggle the corresponding bit in the OUT register. Reading this reg-
ister will return the value in the OUT register.

13.13.9 IN – Data Input Value register

• Bit 7:0 – IN[7:0]: Data Input Value
This register shows the value present on the pins if the digital input driver is enabled. INn shows
the value of pin n of the port. The input is not sampled and cannot be read if the digital input buf-
fers are disabled.

13.13.10 INTCTRL – Interrupt Control Register

• Bit 7:4 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

• Bit 3:2/1:0 – INTnLVL[1:0]: Interrupt n Level
These bits enable port interrupt n and select the interrupt level as described in ”Interrupts and
Programmable Multilevel Interrupt Controller” on page 134.

13.13.11 INT0MASK – Interrupt 0 Mask register

Bit 7 6 5 4 3 2 1 0

+0x07 OUTTGL[7:0] OUTTGL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x08 IN[7:0] IN

Read/Write R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x09 – – – – INT1LVL[1:0] INT0LVL[1:0] INTCTRL

Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x0A INT0MSK[7:0] INT0MASK

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
155
8331B–AVR–03/12

Atmel AVR XMEGA AU
• Bit 7:0 – INT0MSK[7:0]: Interrupt 0 Mask Register
These bits are used to mask which pins can be used as sources for port interrupt 0. If
INT0MASKn is written to one, pin n is used as source for port interrupt 0.The input sense config-
uration for each pin is decided by the PINnCTRL registers.

13.13.12 INT1MASK – Interrupt 1 Mask register

• Bit 7:0 – INT1MASK[7:0]: Interrupt 1 Mask Register
These bits are used to mask which pins can be used as sources for port interrupt 1. If
INT1MASKn is written to one, pin n is used as source for port interrupt 1.The input sense config-
uration for each pin is decided by the PINnCTRL registers.

13.13.13 INTFLAGS – Interrupt Flag register

• Bit 7:2 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

• Bit 1:0 – INTnIF: Interrupt n Flag
The INTnIF flag is set when a pin change/state matches the pin's input sense configuration, and
the pin is set as source for port interrupt n. Writing a one to this flag's bit location will clear the
flag. For enabling and executing the interrupt, refer to the interrupt level description.

13.13.14 REMAP – Pin Remap register
The pin remap functionality is available for PORTC - PORTF only

• Bit 7:6 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

• Bit 5 – SPI: SPI Remap
Setting this bit to one will swap the pin locations of the SCK and MOSI pins to have pin compati-
bility between SPI and USART when the USART is operating as a SPI master.

Bit 7 6 5 4 3 2 1 0

+0x0B INT1MSK[7:0] INT1MASK

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x0C – – – – – – INT1IF INT0IF INTFLAGS

Read/Write R R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x0E – – SPI USART0 TC0D TC0C TC0B TC0A REMAP

Read/Write R R R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
156
8331B–AVR–03/12

Atmel AVR XMEGA AU
• Bit 4 – USART0: USART0 Remap
Setting this bit to one will move the pin location of USART0 from Px[3:0] to Px[7:4].

• Bit 3 – TC0D: Timer/Counter 0 Output Compare D
Setting this bit will move the location of OC0D from Px3 to Px7.

• Bit 2 – TC0C: Timer/Counter 0 Output Compare C
Setting this bit will move the location of OC0C from Px2 to Px6.

• Bit 1 – TC0B: Timer/Counter 0 Output Compare B
Setting this bit will move the location of OC0B from Px1 to Px5. If this bit is set and PWM from
both timer/counter 0 and timer/counter 1 is enabled, the resulting PWM will be an OR-modula-
tion between the two PWM outputs.

• Bit 0 – TC0A: Timer/Counter 0 Output Compare A
Setting this bit will move the location of OC0A from Px0 to Px4. If this bit is set and PWM from
both timer/counter 0 and timer/counter 1 is enabled, the resulting PWM will be an OR-modula-
tion between the two PWM outputs. See Figure 13-11.

Figure 13-11. I/O timer/counter.

13.13.15 PINnCTRL – Pin n Configuration Register

• Bit 7 – SRLEN: Slew Rate Limit Enable
Setting this bit will enable slew rate limiting on pin n.

• Bit 6 – INVEN: Inverted I/O Enable
Setting this bit will enable inverted output and input data on pin n.

• Bit 5:3 – OPC: Output and Pull Configuration
These bits set the output/pull configuration on pin n according to Table 13-5.

OC0A

OC1A

OCA

Bit 7 6 5 4 3 2 1 0

SRLEN INVEN OPC[2:0] ISC[2:0] PINnCTRL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
157
8331B–AVR–03/12

Atmel AVR XMEGA AU
• Bit 2:0 – ISC[2:0]: Input/Sense Configuration
These bits set the input and sense configuration on pin n according to Table 13-6. The sense
configuration decides how the pin can trigger port interrupts and events. If the input buffer is not
disabled, the input cannot be read in the IN register.

Note: 1. A low-level pin value will not generate events, and a high-level pin value will continuously gen-
erate events.

2. Only PORTA - PORTF support the input buffer disable option. If the pin is used for analog func-
tionality, such as AC or ADC, it is recommended to configure the pin to INPUT_DISABLE.

Table 13-5. Output/pull configuration.

OPC[2:0] Group Configuration

Description

Output Configuration Pull Configuration

000 TOTEM Totem-pole (N/A)

001 BUSKEEPER Totem-pole Bus-keeper

010 PULLDOWN Totem-pole Pull-down (on input)

011 PULLUP Totem-pole Pull-up (on input)

100 WIREDOR Wired-OR (N/A)

101 WIREDAND Wired-AND (N/A)

110 WIREDORPULL Wired-OR Pull-down

111 WIREDANDPULL Wired-AND Pull-up

Table 13-6. Input/sense configuration.

ISC[2:0] Group Configuration Description

000 BOTHEDGES Sense both edges

001 RISING Sense rising edge

010 FALLING Sense falling edge

011 LEVEL Sense low level(1)

100 Reserved

101 Reserved

110 Reserved

111 INTPUT_DISABLE Digital input buffer disabled(2)
158
8331B–AVR–03/12

Atmel AVR XMEGA AU
13.14 Register Descriptions – Port Configuration

13.14.1 MPCMASK – Multi-pin Configuration Mask register

• Bit 7:0 – MPCMASK[7:0]: Multi-pin Configuration Mask
The MPCMASK register enables configuration of several pins of a port at the same time. Writing
a one to bit n makes pin n part of the multi-pin configuration. When one or more bits in the MPC-
MASK register is set, writing any of the PINnCTRL registers will update only the PINnCTRL
registers matching the mask in the MPCMASK register for that port. The MPCMASK register is
automatically cleared after any PINnCTRL register is written.

13.14.2 VPCTRLA – Virtual Port-map Control register A

• Bit 7:4 – VP1MAP: Virtual Port 1 Mapping
These bits decide which ports should be mapped to Virtual Port 1. The registers DIR, OUT, IN,
and INTFLAGS will be mapped. Accessing the virtual port registers is equal to accessing the
actual port registers. See Table 13-7 for configuration.

• Bit 3:0 – VP0MAP: Virtual Port 0 Mapping
These bits decide which ports should be mapped to Virtual Port 0. The registers DIR, OUT, IN,
and INTFLAGS will be mapped. Accessing the virtual port registers is equal to accessing the
actual port registers. See Table 13-7 for configuration.

13.14.3 VPCTRLB – Virtual Port-map Control register B

• Bit 7:4 – VP3MAP: Virtual Port 3 Mapping
These bits decide which ports should be mapped to Virtual Port 3. The registers DIR, OUT, IN,
and INTFLAGS will be mapped. Accessing the virtual port registers is equal to accessing the
actual port registers. See Table 13-7 for configuration.

Bit 7 6 5 4 3 2 1 0

+0x00 MPCMASK[7:0] MPCMASK

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x02 VP1MAP[3:0] VP0MAP[3:0] VPCTRLA

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x03 VP3MAP[3:0] VP2MAP[3:0] VPCTRLB

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
159
8331B–AVR–03/12

Atmel AVR XMEGA AU
• Bit 3:0 – VP2MAP: Virtual Port 2 Mapping
These bits decide which ports should be mapped to Virtual Port 2. The registers DIR, OUT, IN,
and INTFLAGS will be mapped. Accessing the virtual port registers is equal to accessing the
actual port registers. See Table 13-7 for configuration.

13.14.4 CLKEVOUT – Clock and Event Out register

• Bit 7 – CLKEVPIN: Clock and Event Output Pin Select
Setting this pin enables output of clock and event pins on port pin 4 instead of port pin 7.

• Bit 6 – RTCOUT: RTC Clock Output Enable
Setting this bit enables output of the RTC clock source on PORTC pin 6.

• Bit 5:4 – EVOUT[1:0]: Event Output Port
These bits decide which port event channel 0 from the event system will be output to. Pin 7 on
the selected port is the default used, and the CLKOUT bits must be set differently from those of
EVOUT. The port pin must be configured as output for the event to be available on the pin.

Table 13-7. Virtual port mapping.

VPnMAP[3:0] Group Configuration Description

0000 PORTA PORTA mapped to Virtual Port n

0001 PORTB PORTB mapped to Virtual Port n

0010 PORTC PORTC mapped to Virtual Port n

0011 PORTD PORTD mapped to Virtual Port n

0100 PORTE PORTE mapped to Virtual Port n

0101 PORTF PORTF mapped to Virtual Port n

0110 PORTG PORTG mapped to Virtual Port n

0111 PORTH PORTH mapped to Virtual Port n

1000 PORTJ PORTJ mapped to Virtual Port n

1001 PORTK PORTK mapped to Virtual Port n

1010 PORTL PORTL mapped to Virtual Port n

1011 PORTM PORTM mapped to Virtual Port n

1100 PORTN PORTN mapped to Virtual Port n

1101 PORTP PORTP mapped to Virtual Port n

1110 PORTQ PORTQ mapped to Virtual Port n

1111 PORTR PORTR mapped to Virtual Port n

Bit 7 6 5 4 3 2 1 0

+0x04 CLKEVPIN RTCOUT EVOUT[1:0] CLKOUTSEL[1:0] CLKOUT[1:0] CLKEVOUT

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
160
8331B–AVR–03/12

Atmel AVR XMEGA AU
Table 13-8 on page 161 shows the possible configurations.

• Bits 3:2 – CLKOUTSEL[1:0] : Clock Output Select
These bits are used to select which of the peripheral clocks will be output to the port pin if CLK-
OUT is configured.

• Bit 1:0 – CLKOUT[1:0]: Clock Output Port
These bits decide which port the peripheral clock will be output to. Pin 7 on the selected port is
the default used. The CLKOUT setting will override the EVOUT setting. Thus, if both are
enabled on the same port pin, the peripheral clock will be visible. The port pin must be config-
ured as output for the clock to be available on the pin.

Table 13-10 on page 161 shows the possible configurations.

13.14.5 EBIOUT – EBI Output register

• Bit 7:4 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

Table 13-8. Event output pin selection.

EVOUT[1:0] Group Configuration Description

00 OFF Event output disabled

01 PC Event channel 0 output on PORTC

10 PD Event channel 0 output on PORTD

11 PE Event channel 0 output on PORTE

Table 13-9. Event output clock selection.

CLKOUTSEL[1:0] Group Configuration Description

00 CLK1X CLKPER output to pin

01 CLK2X CLKPER2 output to pin

10 CLK4X CLKPER4 output to pin

Table 13-10. Clock output port configurations.

CLKOUT[1:0] Group Configuration Description

00 OFF Clock output disabled

01 PC Clock output on PORTC

10 PD Clock output on PORTD

11 PE Clock output on PORTE

Bit 7 6 5 4 3 2 1 0

+0x05 – – – – EBIADROUT[1:0] EBICSOUT[1:0] CLKEVOUT

Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
161
8331B–AVR–03/12

Atmel AVR XMEGA AU
• Bit 3:2 – EBIADROUT[1:0]: EBI Address Output
The maximum configuration of the external bus interface (EBI) requires up to 32 dedicated pins.
For devices with only 24 EBI pins available, eight additional pins can be enabled and placed on
alternate pin locations in order to get a full 32-pin EBI. The port pins must be configured as out-
put for signals to be available on the pins. These bits are available on devices with only three
ports dedicated for the EBI interface. The selections are valid only if the EBI is configured to
operate in four-port mode.

• Bit 1:0 – EBICSOUT[1:0]: EBI Chip Select Output
These bits decide which port the EBI chip select signals will be output to. The pins must be con-
figured as output pins for signals to be available on the pins. Refer to ”Register Description –
EBI” on page 346 for chip select configuration.

13.14.6 EVCTRL – Event Control register

• Bit 7:3 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

• Bit 2:0 – EVOUTSEL[2:0]: Event Channel Output Selection
These bits define which channel from the event system is output to the port pin. Table 13-14 on
page 163 shows the available selections.

Table 13-11. EBI address output port selection.

EBIADROUT[1:0] Group Configuration Description

00 PF EBI port 3 address output on PORTF pins 0 to 7

01 PE EBI port 3 address output on PORTE pins 0 to 7

10 PFH EBI port 3 address output on PORTF pins 4 to 7

11 PEH EBI port 3 address output on PORTE pins 4 to 7

Table 13-12. EBI address output .

EBIADROUT SDRAM SRAM or SRAM LPC
(with SDRAM on CS3)

SRAM
NOALE or ALE1

00 or 01 4’h0, A[11:8] A[23:16] A[15:8]

10 or 11 A[11:8] [19:16] –

Table 13-13. EBI chip select port selection.

EBICSOUT[1:0] Group Configuration Description

00 PH EBI chip select output to PORTH pin 4 to 7

01 PL EBI chip select output to PORTL pin 4 to 7

10 PF EBI chip select output to PORTF pin 4 to 7

11 PE EBI chip select output to PORTE pin 4 to 7

Bit 7 6 5 4 3 2 1 0

+0x06 – – – – – EVOUTSEL[2:0] EVCTRL

Read/Write R R R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
162
8331B–AVR–03/12

Atmel AVR XMEGA AU
Table 13-14. Event channel output selection.

EVOUTSEL[2:0] Group Configuration Description

000 0 Event channel 0 output to pin

001 1 Event channel 1 output to pin

010 2 Event channel 2 output to pin

011 3 Event channel 3 output to pin

100 4 Event channel 4 output to pin

101 5 Event channel 5 output to pin

110 6 Event channel 6 output to pin

111 7 Event channel 7 output to pin
163
8331B–AVR–03/12

Atmel AVR XMEGA AU
13.15 Register Descriptions – Virtual Port

13.15.1 DIR – Data Direction

• Bit 7:0 – DIR[7:0]: Data Direction Register
This register sets the data direction for the individual pins in the port mapped by VPCTRLA, vir-
tual port-map control register A or VPCTRLB, virtual port-map control register B. When a port is
mapped as virtual, accessing this register is identical to accessing the actual DIR register for the
port.

13.15.2 OUT – Data Output Value

• Bit 7:0 – OUT[7:0]: Data Output value
This register sets the data output value for the individual pins in the port mapped by VPCTRLA,
virtual port-map control register A or VPCTRLB, virtual port-map control register B. When a port
is mapped as virtual, accessing this register is identical to accessing the actual OUT register for
the port.

13.15.3 IN – Data Input Value

• Bit 7:0 – IN[7:0]: Data Input Value
This register shows the value present on the pins if the digital input buffer is enabled. The config-
uration of VPCTRLA, virtual port-map control register A or VPCTRLB, virtual port-map control
register A, decides the value in the register. When a port is mapped as virtual, accessing this
register is identical to accessing the actual IN register for the port.

Bit 7 6 5 4 3 2 1 0

+0x00 DIR[7:0] DIR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x01 OUT[7:0] OUT

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x02 IN[7:0] IN

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
164
8331B–AVR–03/12

Atmel AVR XMEGA AU
13.15.4 INTFLAGS – Interrupt Flag register

• Bit 7:2 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

• Bit 1:0 – INTnIF: Interrupt n Flag
The INTnIF flag is set when a pin change/state matches the pin's input sense configuration, and
the pin is set as source for port interrupt n. Writing a one to this flag's bit location will clear the
flag. For enabling and executing the interrupt, refer to the interrupt level description. The config-
uration of VPCTRLA, virtual port-map control register A, or VPCTRLB, Virtual Port-map Control
Register B,, decides which flags are mapped. When a port is mapped as virtual, accessing this
register is identical to accessing the actual INTFLAGS register for the port.

Bit 7 6 5 4 3 2 1 0

+0x03 – – – – – – INT1IF INT0IF INTFLAGS

Read/Write R R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0
165
8331B–AVR–03/12

Atmel AVR XMEGA AU
13.16 Register Summary – Ports

13.17 Register Summary – Port Configuration

13.18 Register Summary – Virtual Ports

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page
+0x00 DIR DIR[7:0] 153

+0x01 DIRSET DIRSET[7:0] 153

+0x02 DIRCLR DIRCLR[7:0] 153

+0x03 DIRTGL DIRTGL[7:0] 153

+0x04 OUT OUT[7:0] 154

+0x05 OUTSET OUTSET[7:0] 154

+0x06 OUTCLR OUTCLR[7:0] 154

+0x07 OUTTGL OUTTGL[7:0] 155

+0x08 IN IN[7:0] 155

+0x09 INTCTRL – – – – INT1LVL[1:0] INT0LVL[1:0] 155

+0x0A INT0MASK INT0MSK[7:0] 155

+0x0B INT1MASK INT1MSK[7:0] 156

+0x0C INTFLAGS – – – – – – INT1IF INT0IF 156

+0x0D Reserved – – – – – – – –

+0x0E REMAP – – SPI USART0 TC0D TC0C TC0B TC0A 156

+0x0F Reserved – – – – – – – –

+0x10 PIN0CTRL SRLEN INVEN OPC[2:0] ISC[2:0] 157

+0x11 PIN1CTRL SRLEN INVEN OPC[2:0] ISC[2:0] 157

+0x12 PIN2CTRL SRLEN INVEN OPC[2:0] ISC[2:0] 157

+0x13 PIN3CTRL SRLEN INVEN OPC[2:0] ISC[2:0] 157

+0x14 PIN4CTRL SRLEN INVEN OPC[2:0] ISC[2:0] 157

+0x15 PIN5CTRL SRLEN INVEN OPC[2:0] ISC[2:0] 157

+0x16 PIN6CTRL SRLEN INVEN OPC[2:0] ISC[2:0] 157

+0x17 PIN7CTRL SRLEN INVEN OPC[2:0] ISC[2:0] 157

+0x18 Reserved – – – – – – – –

+0x19 Reserved – – – – – – – –

+0x1A Reserved – – – – – – – –

+0x1B Reserved – – – – – – – –

+0x1C Reserved – – – – – – – –

+0x1D Reserved – – – – – – – –

+0x1E Reserved – – – – – – – –

+0x1F Reserved – – – – – – – –

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page
+0x00 MPCMASK MPCMASK[7:0] 159

+0x01 Reserved – – – – – – – –

+0x02 VPCTRLA VP1MAP[3:0] VP0MAP[3:0] 159

+0x03 VPCTRLB VP3MAP[3:0] VP2MAP[3:0] 159

+0x04 CLKEVOUT CLKEVPIN RTCOUT EVOUT[1:0] CLKOUTSEL CLKOUT[1:0] 160

+0x05 EBIOUT – – – – EBIADROUT[1:0] EBICSOUT[1:0] 161

+0x06 EVCTRL – – – – – EVCTRL[2:0] 162

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page
+0x00 DIR DIR[7:0] 164

+0x01 OUT OUT[7:0] 164

+0x02 IN IN[7:0] 164

+0x03 INTFLAGS – – – – – – INT1IF INT0IF 165
166
8331B–AVR–03/12

Atmel AVR XMEGA AU
13.19 Interrupt Vector Summary – Ports

Table 13-15. Port interrupt vectors and their word offset address.

Offset Source Interrupt Description

0x00 INT0_vect Port interrupt vector 0 offset

0x02 INT1_vect Port interrupt vector 1 offset
167
8331B–AVR–03/12

Atmel AVR XMEGA AU
14. TC0/1 – 16-bit Timer/Counter Type 0 and 1

14.1 Features
• 16-bit timer/counter
• 32-bit timer/counter support by cascading two timer/counters
• Up to four compare or capture (CC) channels

– Four CC channels for timer/counters of type 0
– Two CC channels for timer/counters of type 1

• Double buffered timer period setting
• Double buffered capture or compare channels
• Waveform generation:

– Frequency generation
– Single-slope pulse width modulation
– Dual-slope pulse width modulation

• Input capture:
– Input capture with noise cancelling
– Frequency capture
– Pulse width capture
– 32-bit input capture

• Timer overflow and error interrupts/events
• One compare match or input capture interrupt/event per CC channel
• Can be used with event system for:

– Quadrature decoding
– Count and direction control
– Capture

• Can be used with DMA and to trigger DMA transactions
• High-resolution extension

– Increases frequency and waveform resolution by 4x (2-bit) or 8x (3-bit)
• Advanced waveform extension:

– Low- and high-side output with programmable dead-time insertion (DTI)
– Event controlled fault protection for safe disabling of drivers

14.2 Overview
Atmel AVR XMEGA devices have a set of flexible, 16-bit timer/counters (TC). Their capabilities
include accurate program execution timing, frequency and waveform generation, and input cap-
ture with time and frequency measurement of digital signals. Two timer/counters can be
cascaded to create a 32-bit timer/counter with optional 32-bit capture.

A timer/counter consists of a base counter and a set of compare or capture (CC) channels. The
base counter can be used to count clock cycles or events. It has direction control and period set-
ting that can be used for timing. The CC channels can be used together with the base counter to
do compare match control, frequency generation, and pulse width waveform modulation, as well
as various input capture operations. A timer/counter can be configured for either capture or com-
pare functions, but cannot perform both at the same time.

A timer/counter can be clocked and timed from the peripheral clock with optional prescaling or
from the event system. The event system can also be used for direction control and capture trig-
ger or to synchronize operations.
168
8331B–AVR–03/12

Atmel AVR XMEGA AU
There are two differences between timer/counter type 0 and type 1. Timer/counter 0 has four CC
channels, and timer/counter 1 has two CC channels. All information related to CC channels 3
and 4 is valid only for timer/counter 0. Only Timer/Counter 0 has the split mode feature that split
it into 2 8-bit Timer/Counters with four compare channels each.

Some timer/counters have extensions to enable more specialized waveform and frequency gen-
eration. The advanced waveform extension (AWeX) is intended for motor control and other
power control applications. It enables low- and high-side output with dead-time insertion, as well
as fault protection for disabling and shutting down external drivers. It can also generate a syn-
chronized bit pattern across the port pins. The high-resolution (hi-res) extension can be used to
increase the waveform output resolution by four or eight times by using an internal clock source
running up to four times faster than the peripheral clock.

A block diagram of the 16-bit timer/counter with extensions and closely related peripheral mod-
ules (in grey) is shown in Figure 14-1 on page 169.

Figure 14-1. 16-bit timer/counter and closely related peripherals.

14.2.1 Definitions
The following definitions are used throughout the documentation:

In general, the term “timer” is used when the timer/counter clock control is handled by an internal
source, and the term “counter” is used when the clock control is handled externally (e.g. count-
ing external events). When used for compare operations, the CC channels are referred to as

AWeX

Compare/Capture Channel D
Compare/Capture Channel C

Compare/Capture Channel B
Compare/Capture Channel A

Waveform
GenerationBuffer

Comparator H
i-R

es

Fault
Protection

Capture
Control

Base Counter

Counter
Control Logic

Timer Period
Prescaler

Dead-Time
Insertion

Pattern
Generation

clkPER4

PO
R

TS

Event
System

clkPER

Timer/Counter

Table 14-1. Timer/counter definitions.

Name Description

BOTTOM The counter reaches BOTTOM when it becomes zero.

MAX The counter reaches MAXimum when it becomes all ones.

TOP
The counter reaches TOP when it becomes equal to the highest value in the count
sequence. The TOP value can be equal to the period (PER) or the compare channel
A (CCA) register setting. This is selected by the waveform generator mode.

UPDATE
The timer/counter signals an update when it reaches BOTTOM or TOP, depending on
the waveform generator mode.
169
8331B–AVR–03/12

Atmel AVR XMEGA AU
“compare channels.” When used for capture operations, the CC channels are referred to as
“capture channels.”

14.3 Block Diagram
Figure 14-2 on page 170 shows a detailed block diagram of the timer/counter without the
extensions.

Figure 14-2. Timer/counter block diagram.

The counter register (CNT), period registers with buffer (PER and PERBUF), and compare and
capture registers with buffers (CCx and CCxBUF) are 16-bit registers. All buffer register have a
buffer valid (BV) flag that indicates when the buffer contains a new value.

During normal operation, the counter value is continuously compared to zero and the period
(PER) value to determine whether the counter has reached TOP or BOTTOM.

The counter value is also compared to the CCx registers. These comparisons can be used to
generate interrupt requests, request DMA transactions or generate events for the event system.
The waveform generator modes use these comparisons to set the waveform period or pulse
width.

Base Counter

Compare/Capture
(Unit x = {A,B,C,D})

Counter

=

CCx

CCBUFx

Waveform
Generation

BV

=

PERBUF

PER

CNT

BV

= 0

"count"
"clear"

"direction"
"load"

Control Logic

CTRLD

CTRLA

OVF/UNF
(INT/DMA Req.)

ERRIF
(INT Req.)

TOP

"match" CCxIF
(INT/DMA
Req.)

Control Logic

Clock Select

"e
v"

U
PD

A
TE

BOTTOM

OCx Out

Event
Select
170
8331B–AVR–03/12

Atmel AVR XMEGA AU
A prescaled peripheral clock and events from the event system can be used to control the coun-
ter. The event system is also used as a source to the input capture. Combined with the
quadrature decoding functionality in the event system (QDEC), the timer/counter can be used
for quadrature decoding.

14.4 Clock and Event Sources
The timer/counter can be clocked from the peripheral clock (clkPER) or the event system, and
Figure 14-3 shows the clock and event selection.

Figure 14-3. Clock and event selection.

The peripheral clock is fed into a common prescaler (common for all timer/counters in a device).
Prescaler outputs from 1 to 1/1024 are directly available for selection by the timer/counter. In
addition, the whole range of prescaling from 1 to 215 times is available through the event system.

Clock selection (CLKSEL) selects one of the prescaler outputs directly or an event channel as
the counter (CNT) input. This is referred to as normal operation of the counter. For details, refer
to ”Normal Operation” on page 172. By using the event system, any event source, such as an
external clock signal on any I/O pin, may be used as the clock input.

In addition, the timer/counter can be controlled via the event system. The event selection
(EVSEL) and event action (EVACT) settings are used to trigger an event action from one or
more events. This is referred to as event action controlled operation of the counter. For details,
refer to ”Event Action Controlled Operation” on page 173. When event action controlled opera-
tion is used, the clock selection must be set to use an event channel as the counter input.

By default, no clock input is selected and the timer/counter is not running.

14.5 Double Buffering
The period register and the CC registers are all double buffered. Each buffer register has a buf-
fer valid (BV) flag, which indicates that the buffer register contains a valid, i.e. new, value that
can be copied into the corresponding period or CC register. When the period register and CC
channels are used for a compare operation, the buffer valid flag is set when data is written to the
buffer register and cleared on an UPDATE condition. This is shown for a compare register in
Figure 14-4 on page 172.

clkPER /
2{0,...,15}

CKSEL

CNT

EVACT

clkPER /
{1,2,4,8,64,256,1024}

Common
PrescalerclkPER

event channels

(Encoding)

Event System

EVSEL Control Logic

events
171
8331B–AVR–03/12

Atmel AVR XMEGA AU
Figure 14-4. Period and compare double buffering.

When the CC channels are used for a capture operation, a similar double buffering mechanism
is used, but in this case the buffer valid flag is set on the capture event, as shown in Figure 14-5.
For capture, the buffer register and the corresponding CCx register act like a FIFO. When the
CC register is empty or read, any content in the buffer register is passed to the CC register. The
buffer valid flag is passed to set the CCx interrupt flag (IF) and generate the optional interrupt.

Figure 14-5. Capture double buffering.

Both the CCx and CCxBUF registers are available as an I/O register. This allows initialization
and bypassing of the buffer register and the double buffering function.

14.6 Counter Operation
Depending on the mode of operation, the counter is cleared, reloaded, incremented, or decre-
mented at each timer/counter clock input.

14.6.1 Normal Operation
In normal operation, the counter will count in the direction set by the direction (DIR) bit for each
clock until it reaches TOP or BOTTOM. When up-counting and TOP is reached, the counter will
be set to zero when the next clock is given. When down-counting, the counter is reloaded with
the period register value when BOTTOM is reached.

BV

UPDATE

"write enable" "data write"

=

CNT

"match"

CCxBUF

CCxEN

EN

BV

"capture"

IF

CNT

CCxBUF

CCxEN

EN

"INT/DMA
request" data read
172
8331B–AVR–03/12

Atmel AVR XMEGA AU
Figure 14-6. Normal operation.

As shown in Figure 14-6, it is possible to change the counter value when the counter is running.
The write access has higher priority than count, clear, or reload, and will be immediate. The
direction of the counter can also be changed during normal operation.

Normal operation must be used when using the counter as timer base for the capture channels.

14.6.2 Event Action Controlled Operation
The event selection and event action settings can be used to control the counter from the event
system. For the counter, the following event actions can be selected:

• Event system controlled up/down counting

– Event n will be used as count enable

– Event n+1 will be used to select between up (1) and down (0). The pin configuration
must be set to low level sensing

• Event system controlled quadrature decode counting

14.6.3 32-bit Operation
Two timer/counters can be used together to enable 32-bit counter operation. By using two
timer/counters, the overflow event from one timer/counter (least-significant timer) can be routed
via the event system and used as the clock input for another timer/counter (most-significant
timer).

14.6.4 Changing the Period
The counter period is changed by writing a new TOP value to the period register. If double buff-
ering is not used, any period update is immediate, as shown in Figure 14-7 on page 174.

CNT

BOTTOM

MAX

"update"

TOP

CNT written

DIR
173
8331B–AVR–03/12

Atmel AVR XMEGA AU
Figure 14-7. Changing the period without buffering.

A counter wraparound can occur in any mode of operation when up-counting without buffering,
as shown in Figure 14-8. This due to the fact that CNT and PER are continuously compared,
and if a new TOP value that is lower than current CNT is written to PER, it will wrap before a
compare match happen.

Figure 14-8. Unbuffered dual-slope operation.

When double buffering is used, the buffer can be written at any time and still maintain correct
operation. The period register is always updated on the UPDATE condition, as shown for dual-
slope operation in Figure 14-9. This prevents wraparound and the generation of odd waveforms.

Figure 14-9. Changing the period using buffering.

CNT

MAX

New TOP written to
PER that is higher
than current CNT

Counter Wraparound

New TOP written to
PER that is lower
than current CNT

"update"

"write"

BOTTOM

CNT

MAX

New TOP written to
PER that is higher
than current CNT

New TOP written to
PER that is lower
than current CNT

"update"

"write"

Counter Wraparound

BOTTOM

CNT

MAX

New Period written to
PERBUF that is higher

than current CNT

New Period written to
PERBUF that is lower

than current CNT

"update"

"write"

New PER is updated
with PERBUF value.

BOTTOM
174
8331B–AVR–03/12

Atmel AVR XMEGA AU
14.7 Capture Channel
The CC channels can be used as capture channels to capture external events and give them a
timestamp. To use capture, the counter must be set for normal operation.

Events are used to trigger the capture; i.e., any events from the event system, including pin
change from any pin, can trigger a capture operation. The event source select setting selects
which event channel will trigger CC channel A. The subsequent event channels then trigger
events on subsequent CC channels, if configured. For example, setting the event source select
to event channel 2 results in CC channel A being triggered by event channel 2, CC channel B
triggered by event channel 3, and so on.

Figure 14-10. Event source selection for capture operation.

The event action setting in the timer/counter will determine the type of capture that is done.

The CC channels must be enabled individually before capture can be done. When the capture
condition occur, the timer/counter will time-stamp the event by copying the current CNT value in
the count register into the enabled CC channel register.

When an I/O pin is used as an event source for the capture, the pin must be configured for edge
sensing. For details on sense configuration on I/O pins, refer to ”Input Sense Configuration” on
page 148. If the period register value is lower than 0x8000, the polarity of the I/O pin edge will be
stored in the most-significant bit (msb) of the capture register. If the msb of the capture register
is zero, a falling edge generated the capture. If the msb is one, a rising edge generated the
capture.

14.7.1 Input Capture
Selecting the input capture event action makes the enabled capture channel perform an input
capture on an event. The interrupt flags will be set and indicate that there is a valid capture result
in the corresponding CC register. At the same time, the buffer valid flags indicate valid data in
the buffer registers.

The counter will continuously count from BOTTOM to TOP, and then restart at BOTTOM, as
shown in Figure 14-11. The figure also shows four capture events for one capture channel.

Event System
CH0MUX
CH1MUX

CHnMUX
Rotate

Event channel n

Event Source Selection

CCA capture

CCB capture

CCC capture

CCD capture

Event channel 0
Event channel 1
175
8331B–AVR–03/12

Atmel AVR XMEGA AU
Figure 14-11. Input capture timing.

14.7.2 Frequency Capture
Selecting the frequency capture event action makes the enabled capture channel perform an
input capture and restart on positive edge events. This enables the timer/counter to measure the
period or frequency of a signal directly. The capture result will be the time (T) from the previous
timer/counter restart until the event occurred. This can be used to calculate the frequency (f) of
the signal:

Figure 14-12 on page 176 shows an example where the period of an external signal is measured
twice.

Figure 14-12. Frequency capture of an external signal.

Since all capture channels use the same counter (CNT), only one capture channel must be
enabled at a time. If two capture channels are used with different sources, the counter will be
restarted on positive edge events from both input sources, and the result will have no meaning.

events

CNT

TOP

BOTTOM

Capture 0 Capture 1 Capture 2 Capture 3

f 1
T
---=

Period (T)

external signal

events

CNT

MAX

BOTTOM

"capture"
176
8331B–AVR–03/12

Atmel AVR XMEGA AU
14.7.3 Pulse Width Capture
Selecting the pulse width measure event action makes the enabled compare channel perform
the input capture action on falling edge events and the restart action on rising edge events. The
counter will then restart on positive edge events, and the input capture will be performed on the
negative edge event. The event source must be an I/O pin, and the sense configuration for the
pin must be set to generate an event on both edges. Figure 14-13 on page 177 shows and
example where the pulse width is measured twice for an external signal.

Figure 14-13. Pulse width capture of an external signal.

14.7.4 32-bit Input Capture
Two timer/counters can be used together to enable true 32-bit input capture. In a typical 32-bit
input capture setup, the overflow event of the least-significant timer is connected via the event
system and used as the clock input for the most-significant timer.

The most-significant timer will be updated one peripheral clock period after an overflow occurs
for the least-significant timer. To compensate for this, the capture event for the most-significant
timer must be equally delayed by setting the event delay bit for this timer.

14.7.5 Capture Overflow
The timer/counter can detect buffer overflow of the input capture channels. When both the buffer
valid flag and the capture interrupt flag are set and a new capture event is detected, there is
nowhere to store the new timestamp. If a buffer overflow is detected, the new value is rejected,
the error interrupt flag is set, and the optional interrupt is generated.

14.8 Compare Channel
Each compare channel continuously compares the counter value (CNT) with the CCx register. If
CNT equals CCx, the comparator signals a match. The match will set the CC channel's interrupt
flag at the next timer clock cycle, and the event and optional interrupt are generated.

The compare buffer register provides double buffer capability equivalent to that for the period
buffer. The double buffering synchronizes the update of the CCx register with the buffer value to
either the TOP or BOTTOM of the counting sequence according to the UPDATE condition. The

Pulsewitdh (tp)

external signal

events

CNT

MAX

BOTTOM

"capture"
177
8331B–AVR–03/12

Atmel AVR XMEGA AU
synchronization prevents the occurrence of odd-length, non-symmetrical pulses for glitch-free
output.

14.8.1 Waveform Generation
The compare channels can be used for waveform generation on the corresponding port pins. To
make the waveform visible on the connected port pin, the following requirements must be
fulfilled:

1. A waveform generation mode must be selected.

2. Event actions must be disabled.

3. The CC channels used must be enabled. This will override the corresponding port pin
output register.

4. The direction for the associated port pin must be set to output.

Inverted waveform output is achieved by setting the invert output bit for the port pin.

14.8.2 Frequency (FRQ) Waveform Generation
For frequency generation the period time (T) is controlled by the CCA register instead of PER.
The waveform generation (WG) output is toggled on each compare match between the CNT and
CCA registers, as shown in Figure 14-14 on page 178.

Figure 14-14. Frequency waveform generation.

The waveform frequency (fFRQ) is defined by the following equation:

where N represents the prescaler divider used. The waveform generated will have a maximum
frequency of half of the peripheral clock frequency (fclkPER) when CCA is set to zero (0x0000)
and no prescaling is used. This also applies when using the hi-res extension, since this
increases the resolution and not the frequency.

14.8.3 Single-slope PWM Generation
For single-slope PWM generation, the period (T) is controlled by PER, while CCx registers con-
trol the duty cycle of the WG output. Figure 14-15 shows how the counter counts from BOTTOM

CNT

MAX

"update"

TOP

CNT writtenDirection ChangePeriod (T)

BOTTOM

WG Output

fFRQ
fclkPER

2N CCA 1+()
-----------------------------------=
178
8331B–AVR–03/12

Atmel AVR XMEGA AU
to TOP and then restarts from BOTTOM. The waveform generator (WG) output is set on the
compare match between the CNT and CCx registers and cleared at TOP.

Figure 14-15. Single-slope pulse width modulation.

The PER register defines the PWM resolution. The minimum resolution is 2 bits (PER=0x0003),
and the maximum resolution is 16 bits (PER=MAX).

The following equation calculate the exact resolution for single-slope PWM (RPWM_SS):

The single-slope PWM frequency (fPWM_SS) depends on the period setting (PER) and the periph-
eral clock frequency (fclkPER), and can be calculated by the following equation:

where N represents the prescaler divider used. The waveform generated will have a maximum
frequency of half of the peripheral clock frequency (fclkPER) when CCA is set to zero (0x0000)
and no prescaling is used. This also applies when using the hi-res extension, since this
increases the resolution and not the frequency.

14.8.4 Dual-slope PWM
For dual-slope PWM generation, the period (T) is controlled by PER, while CCx registers control
the duty cycle of the WG output. Figure 14-16 shows how for dual-slope PWM the counter
counts repeatedly from BOTTOM to TOP and then from TOP to BOTTOM. The waveform gener-
ator output is set on BOTTOM, cleared on compare match when up-counting, and set on
compare match when down-counting.

CNT

MAX
TOP

Period (T) "match"

BOTTOM

WG Output

CCx=BOTTOM

CCx

CCx=TOP
"update"

RPWM_SS
PER 1+()log

2()log
-----------------------------------=

fPWM_SS
fclkPER

N PER 1+()
-------------------------------=
179
8331B–AVR–03/12

Atmel AVR XMEGA AU
Figure 14-16. Dual-slope pulse width modulation.

Using dual-slope PWM results in a lower maximum operation frequency compared to the single-
slope PWM operation.

The period register (PER) defines the PWM resolution. The minimum resolution is 2 bits
(PER=0x0003), and the maximum resolution is 16 bits (PER=MAX).

The following equation calculate the exact resolution for dual-slope PWM (RPWM_DS):

The PWM frequency depends on the period setting (PER) and the peripheral clock frequency
(fclkPER), and can be calculated by the following equation:

N represents the prescaler divider used. The waveform generated will have a maximum fre-
quency of half of the peripheral clock frequency(fclkPER) when CCA is set to zero (0x0000) and
no prescaling is used. This also applies when using the hi-res extension, since this increases the
resolution and not the frequency.

14.8.5 Port Override for Waveform Generation
To make the waveform generation available on the port pins, the corresponding port pin direc-
tion must be set as output. The timer/counter will override the port pin values when the CC
channel is enabled (CCENx) and a waveform generation mode is selected.

Figure 14-17 on page 181 shows the port override for a timer/counter. The timer/counter CC
channel will override the port pin output value (OUT) on the corresponding port pin. Enabling
inverted I/O on the port pin (INVEN) inverts the corresponding WG output.

CNT

MAX

TOP

Period (T)

BOTTOM

WG Output

CCx=BOTTOM

CCx

CCx=TOP
"match"
"update"

RPWM_DS
PER 1+()log

2()log
-----------------------------------=

fPWM_DS
fclkPER
2NPER
--------------------=
180
8331B–AVR–03/12

Atmel AVR XMEGA AU
Figure 14-17. Port override for timer/counter 0 and 1.

14.9 Interrupts and events
The timer/counter can generate both interrupts and events. The counter can generate an inter-
rupt on overflow/underflow, and each CC channel has a separate interrupt that is used for
compare or capture. In addition, an error interrupt can be generated if any of the CC channels is
used for capture and a buffer overflow condition occurs on a capture channel.

Events will be generated for all conditions that can generate interrupts. For details on event gen-
eration and available events, refer to ”Event System” on page 71.

14.10 DMA Support
The interrupt flags can be used to trigger DMA transactions. Table 14-2 on page 181 lists the
transfer triggers available from the timer/counter and the DMA action that will clear the transfer
trigger. For more details on using DMA, refer to ”DMAC - Direct Memory Access Controller” on
page 54.

14.11 Timer/Counter Commands
A set of commands can be given to the timer/counter by software to immediately change the
state of the module. These commands give direct control of the UPDATE, RESTART, and
RESET signals.

An update command has the same effect as when an update condition occurs. The update com-
mand is ignored if the lock update bit is set.

The software can force a restart of the current waveform period by issuing a restart command. In
this case the counter, direction, and all compare outputs are set to zero.

A reset command will set all timer/counter registers to their initial values. A reset can be given
only when the timer/counter is not running (OFF).

OUT

CCExEN INVEN

OCxWaveform

Table 14-2. DMA request sources.

Request Acknowledge Comment

OVFIF/UNFIF DMA controller writes to CNT
DMA controller writes to PER
DMA controller writes to PERBUF

ERRIF N/A

CCxIF DMA controller access of CCx
DMA controller access of CCxBUF

Input capture operation
Output compare operation
181
8331B–AVR–03/12

Atmel AVR XMEGA AU
14.12 Register Description

14.12.1 CTRLA – Control register A

• Bit 7:4 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

• Bit 3:0 – CLKSEL[3:0]: Clock Select
These bits select the clock source for the timer/counter according to Table 14-3.

CLKSEL=0001 must be set to ensure a correct output from the waveform generator when the hi-
res extension is enabled.

14.12.2 CTRLB – Control register B

• Bit 7:4 – CCxEN: Compare or Capture Enable
Setting these bits in the FRQ or PWM waveform generation mode of operation will override the
port output register for the corresponding OCn output pin.

When input capture operation is selected, the CCxEN bits enable the capture operation for the
corresponding CC channel.

Bit 7 6 5 4 3 2 1 0

+0x00 – – – – CLKSEL[3:0] CTRLA

Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 14-3. Clock select options.

CLKSEL[3:0] Group Configuration Description

0000 OFF None (i.e, timer/counter in OFF state)

0001 DIV1 Prescaler: Clk

0010 DIV2 Prescaler: Clk/2

0011 DIV4 Prescaler: Clk/4

0100 DIV8 Prescaler: Clk/8

0101 DIV64 Prescaler: Clk/64

0110 DIV256 Prescaler: Clk/256

0111 DIV1024 Prescaler: Clk/1024

1nnn EVCHn Event channel n, n= [0,...,7]

Bit 7 6 5 4 3 2 1 0

+0x01 CCDEN CCCEN CCBEN CCAEN – WGMODE[2:0] CTRLB

Read/Write R/W R/W R/W R/W R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
182
8331B–AVR–03/12

Atmel AVR XMEGA AU
• Bit 3 – Reserved
This bit is unused and reserved for future use. For compatibility with future devices, always write
this bit to zero when this register is written.

• Bit 2:0 – WGMODE[2:0]: Waveform Generation Mode
These bits select the waveform generation mode, and control the counting sequence of the
counter, TOP value, UPDATE condition, interrupt/event condition, and type of waveform that is
generated according to Table 14-4 on page 183.

No waveform generation is performed in the normal mode of operation. For all other modes, the
result from the waveform generator will only be directed to the port pins if the corresponding
CCxEN bit has been set to enable this. The port pin direction must be set as output.

14.12.3 CTRLC – Control register C

• Bit 7:4 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

• Bit 3:0 – CMPx: Compare Output Value x
These bits allow direct access to the waveform generator's output compare value when the
timer/counter is set in the OFF state. This is used to set or clear the WG output value when the
timer/counter is not running.

Table 14-4. Timer waveform generation mode.

WGMODE[2:0]
Group

Configuration
Mode of
Operation Top Update OVFIF/Event

000 NORMAL Normal PER TOP TOP

001 FRQ Frequency CCA TOP TOP

010 Reserved - - -

011 SINGLESLOPE
Single-slope
PWM

PER BOTTOM BOTTOM

100 Reserved - - -

101 DSTOP Dual-slope PWM PER BOTTOM TOP

110 DSBOTH Dual-slope PWM PER BOTTOM TOP and BOTTOM

111 DSBOTTOM Dual-slope PWM PER BOTTOM BOTTOM

Bit 7 6 5 4 3 2 1 0

+0x02 – – – – CMPD CMPC CMPB CMPA CTRLC

Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
183
8331B–AVR–03/12

Atmel AVR XMEGA AU
14.12.4 CTRLD – Control register D

• Bit 7:5 – EVACT[2:0]: Event Action
These bits define the event action the timer will perform on an event according to Table 14-5 on
page 184.

The EVSEL setting will decide which event source or sources have control in this case.

Selecting any of the capture event actions changes the behaviour of the CCx registers and
related status and control bits to be used for capture. The error status flag (ERRIF) will indicate a
buffer overflow in this configuration. See ”Event Action Controlled Operation” on page 173 for
futher details.

• Bit 4 – EVDLY: Timer Delay Event
When this bit is set, the selected event source is delayed by one peripheral clock cycle. This is
intended for 32-bit input capture operation. Adding the event delay is necessary to compensate
for the carry propagation delay when cascading two counters via the event system.

• Bit 3:0 – EVSEL[3:0]:Timer Event Source Select
These bits select the event channel source for the timer/counter. For the selected event channel
to have any effect, the event action bits (EVACT) must be set according to Table 14-6. When the
event action is set to a capture operation, the selected event channel n will be the event channel
source for CC channel A, and event channel (n+1)%8, (n+2)%8, and (n+3)%8 will be the event
channel source for CC channel B, C, and D.

Bit 7 6 5 4 3 2 1 0

+0x03 EVACT[2:0] EVDLY EVSEL[3:0] CTRLD

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 14-5. Timer event action selection.

EVACT[2:0] Group Configuration Event Action

000 OFF None

001 CAPT Input capture

010 UPDOWN Externally controlled up/ down count

011 QDEC Quadrature decode

100 RESTART Restart waveform period

101 FRQ Frequency capture

110 PW Pulse width capture

111 Reserved
184
8331B–AVR–03/12

Atmel AVR XMEGA AU

14.12.5 CTRLE – Control register E

• Bit 7:2 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

• Bit 1:0 – BYTEM[1:0]: Byte Mode
These bits select the timer/counter operation mode according to Table 14-7 on page 185.

14.12.6 INTCTRLA – Interrupt Enable register A

Table 14-6. Timer event source selection.

EVSEL[3:0] Group Configuration Event Source

0000 OFF None

0001 Reserved

0010 Reserved

0011 Reserved

0100 Reserved

0101 Reserved

0110 Reserved

0111 Reserved

1nnn CHn Event channel n, n={0,...,7}

Bit 7 6 5 4 3 2 1 0

+0x04 – – – – – – BYTEM[1:0] CTRLE

Read/Write R R R R R R R R/W

Initial Value 0 0 0 0 0 0 0 0

Table 14-7. Clock select.

BYTEM[1:0] Group Configuration Description

00 NORMAL Timer/counter is set to normal mode (timer/counter type 0)

01 BYTEMODE
Upper byte of the counter (CNTH) will be set to zero after
each counter clock cycle

10 SPLITMODE
Timer/counter 0 is split into two 8-bit timer/counters
(timer/counter type 2)

11 Reserved

Bit 7 6 5 4 3 2 1 0

+0x06 – – – – ERRINTLVL[1:0] OVFINTLVL[1:0] INTCTRLA

Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
185
8331B–AVR–03/12

Atmel AVR XMEGA AU
• Bit 7:4 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

• Bit 3:2 – ERRINTLVL[1:0]:Timer Error Interrupt Level
These bits enable the timer error interrupt and select the interrupt level as described in ”Inter-
rupts and Programmable Multilevel Interrupt Controller” on page 134.

• Bit 1:0 – OVFINTLVL[1:0]:Timer Overflow/Underflow Interrupt Level
These bits enable the timer overflow/underflow interrupt and select the interrupt level as
described in ”Interrupts and Programmable Multilevel Interrupt Controller” on page 134.

14.12.7 INTCTRLB – Interrupt Enable register B

• Bit 7:0 – CCxINTLVL[7:0] - Compare or Capture x Interrupt Level:
These bits enable the timer compare or capture interrupt for channel x and select the interrupt
level as described in ”Interrupts and Programmable Multilevel Interrupt Controller” on page 134.

14.12.8 CTRLFCLR/CTRLFSET – Control register F Clear/Set
This register is mapped into two I/O memory locations, one for clearing (CTRLxCLR) and one for
setting the register bits (CTRLxSET) when written. Both memory locations will give the same
result when read.

The individual status bit can be set by writing a one to its bit location in CTRLxSET, and cleared
by writing a one to its bit location in CTRLxCLR. This allows each bit to be set or cleared without
use of a read-modify-write operation on a single register.

• Bit 7:4 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

Bit 7 6 5 4 3 2 1 0

+0x07 CCDINTLVL[1:0] CCCINTLVL[1:0] CCBINTLVL[1:0] CCAINTLVL[1:0] INTCTRLB

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x08 – – – – CMD[1:0] LUPD DIR CTRLFCLR

Read/Write R R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x09 – – – – CMD[1:0] LUPD DIR CTRLFSET

Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
186
8331B–AVR–03/12

Atmel AVR XMEGA AU
• Bit 3:2 – CMD[1:0]: Command
These bits can be used for software control of update, restart, and reset of the timer/counter.
The command bits are always read as zero.

• Bit 1 – LUPD: Lock Update
When this bit is set, no update of the buffered registers is performed, even though an UPDATE
condition has occurred. Locking the update ensures that all buffers, including DTI buffers, are
valid before an update is performed.

This bit has no effect when input capture operation is enabled.

• Bit 0 – DIR: Counter Direction
When zero, this bit indicates that the counter is counting up (incrementing). A one indicates that
the counter is in the down-counting (decrementing) state.

Normally this bit is controlled in hardware by the waveform generation mode or by event actions,
but this bit can also be changed from software.

14.12.9 CTRLGCLR/CTRLGSET – Control register G Clear/Set

Refer to ”CTRLFCLR/CTRLFSET – Control register F Clear/Set” on page 186 for information on
how to access this type of status register.

• Bit 7:5 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

• Bit 4:1 – CCxBV: Compare or Capture x Buffer Valid
These bits are set when a new value is written to the corresponding CCxBUF register. These
bits are automatically cleared on an UPDATE condition.

Note that when input capture operation is used, this bit is set on a capture event and cleared if
the corresponding CCxIF is cleared.

• Bit 0 – PERBV: Period Buffer Valid
This bit is set when a new value is written to the PERBUF register. This bit is automatically
cleared on an UPDATE condition.

Table 14-8. Command selections

CMD Group Configuration Command Action

00 NONE None

01 UPDATE Force update

10 RESTART Force restart

11 RESET Force hard reset (ignored if T/C is not in OFFstate)

Bit 7 6 5 4 3 2 1 0

+0x0A/ +0x0B – – – CCDBV CCCBV CCBBV CCABV PERBV CTRLGCLR/SET

Read/Write R R R R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
187
8331B–AVR–03/12

Atmel AVR XMEGA AU
14.12.10 INTFLAGS – Interrupt Flag register

• Bit 7:4 – CCxIF: Compare or Capture Channel x Interrupt Flag
The compare or capture interrupt flag (CCxIF) is set on a compare match or on an input capture
event on the corresponding CC channel.

For all modes of operation except for capture, the CCxIF will be set when a compare match
occurs between the count register (CNT) and the corresponding compare register (CCx). The
CCxIF is automatically cleared when the corresponding interrupt vector is executed.

For input capture operation, the CCxIF will be set if the corresponding compare buffer contains
valid data (i.e., when CCxBV is set). The flag will be cleared when the CCx register is read. Exe-
cuting the interrupt vector in this mode of operation will not clear the flag.

The flag can also be cleared by writing a one to its bit location.

The CCxIF can be used for requesting a DMA transfer. A DMA read or write access of the corre-
sponding CCx or CCxBUF will then clear the CCxIF and release the request.

• Bit 3:2 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

• Bit 1 – ERRIF: Error Interrupt Flag
This flag is set on multiple occasions, depending on the mode of operation.

In the FRQ or PWM waveform generation mode of operation, ERRIF is set on a fault detect con-
dition from the fault protection feature in the AWeX extention. For timer/counters which do not
have the AWeX extention available, this flag is never set in FRQ or PWM waveform generation
mode.

For capture operation, ERRIF is set if a buffer overflow occurs on any of the CC channels.

For event controlled QDEC operation, ERRIF is set when an incorrect index signal is given.

This flag is automatically cleared when the corresponding interrupt vector is executed. The flag
can also be cleared by writing a one to this location.

• Bit 0 – OVFIF: Overflow/Underflow Interrupt Flag
This flag is set either on a TOP (overflow) or BOTTOM (underflow) condition, depending on the
WGMODE setting. OVFIF is automatically cleared when the corresponding interrupt vector is
executed. The flag can also be cleared by writing a one to its bit location.

OVFIF can also be used for requesting a DMA transfer. A DMA write access of CNT, PER, or
PERBUF will then clear the OVFIF bit.

14.12.11 TEMP – Temporary register for 16-bit Access
The TEMP register is used for single-cycle, 16-bit access to the 16-bit timer/counter registers by
the CPU. The DMA controller has a separate temporary storage register. There is one common
TEMP register for all the 16-bit Timer/counter registers.

Bit 7 6 5 4 3 2 1 0

+0x0C CCDIF CCCIF CCBIF CCAIF – – ERRIF OVFIF INTFLAGS

Read/Write R/W R/W R/W R/W R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0
188
8331B–AVR–03/12

Atmel AVR XMEGA AU
For more details, refer to ”Accessing 16-bit Registers” on page 13.

14.12.12 CNTL – Counter register L
The CNTH and CNTL register pair represents the 16-bit value, CNT. CNT contains the 16-bit
counter value in the timer/counter. CPU and DMA write access has priority over count, clear, or
reload of the counter.

For more details on reading and writing 16-bit registers, refer to ”Accessing 16-bit Registers” on
page 13.

• Bit 7:0 – CNT[7:0]
These bits hold the LSB of the 16-bit counter register.

14.12.13 CNTH – Counter register H

• Bit 7:0 – CNT[15:8]
These bits hold the MSB of the 16-bit counter register.

14.12.14 PERL – Period register L
The PERH and PERL register pair represents the 16-bit value, PER. PER contains the 16-bit
TOP value in the timer/counter.

• Bit 7:0 – PER[7:0]
These bits hold the LSB of the 16-bit period register.

Bit 7 6 5 4 3 2 1 0

+0x0F TEMP[7:0] TEMP

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x20 CNT[7:0] CNTL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x21 CNT[15:8] CNTH

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x26 PER[7:0] PERL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 1 1 1 1 1 1 1 1
189
8331B–AVR–03/12

Atmel AVR XMEGA AU
14.12.15 PERH – Period register H

• Bit 7:0 – PER[15:8]
These bits hold the MSB of the 16-bit period register.

14.12.16 CCxL – Compare or Capture x register L
The CCxH and CCxL register pair represents the 16-bit value, CCx. These 16-bit register pairs
have two functions, depending of the mode of operation.

For capture operation, these registers constitute the second buffer level and access point for the
CPU and DMA.

For compare operation, these registers are continuously compared to the counter value. Nor-
mally, the outputs form the comparators are then used for generating waveforms.

CCx registers are updated with the buffer value from their corresponding CCxBUF register when
an UPDATE condition occurs.

• Bit 7:0 – CCx[7:0]
These bits hold the LSB of the 16-bit compare or capture register.

14.12.17 CCxH – Compare or Capture x register H

• Bit 7:0 – CCx[15:8]
These bits hold the MSB of the 16-bit compare or capture register.

14.12.18 PERBUFL – Timer/Counter Period Buffer L
The PERBUFH and PERBUFL register pair represents the 16-bit value, PERBUF. This 16-bit
register serves as the buffer for the period register (PER). Accessing this register using the CPU
or DMA will affect the PERBUFV flag.

Bit 7 6 5 4 3 2 1 0

+0x27 PER[15:8] PERH

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 1 1 1 1 1 1 1 1

Bit 7 6 5 4 3 2 1 0

CCx[7:0] CCxL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

CCx[15:8] CCxH

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x36 PERBUF[7:0] PERBUFL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 1 1 1 1 1 1 1 1
190
8331B–AVR–03/12

Atmel AVR XMEGA AU
• Bit 7:0 – PERBUF[7:0]
These bits hold the LSB of the 16-bit period buffer register.

14.12.19 PERBUFH – Timer/Counter Period Buffer H

• Bit 7:0 – PERBUF[15:8]
These bits hold the MSB of the 16-bit period buffer register.

14.12.20 CCxBUFL – Compare or Capture x Buffer register L
The CCxBUFH and CCxBUFL register pair represents the 16-bit value, CCxBUF. These 16-bit
registers serve as the buffer for the associated compare or capture registers (CCx). Accessing
any of these registers using the CPU or DMA will affect the corresponding CCxBV status bit.

• Bit 7:0 – CCxBUF[7:0]
These bits hold the LSB of the 16-bit compare or capture buffer register.

14.12.21 CCxBUFH – Compare or Capture x Buffer register H

• Bit 7:0 – CCxBUF[15:8]
These bits hold the MSB of the 16-bit compare or capture buffer register.

Bit 7 6 5 4 3 2 1 0

+0x37 PERBUF[15:8] PERBUFH

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 1 1 1 1 1 1 1 1

Bit 7 6 5 4 3 2 1 0

CCxBUFx[7:0] CCxBUFL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

CCxBUF[15:8] CCxBUFH

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
191
8331B–AVR–03/12

Atmel AVR XMEGA AU
14.13 Register Summary

14.14 Interrupt Vector Summary

Note: 1. Available only on timer/counters with four compare or capture channels.

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page
+0x00 CTRLA – – – – CLKSEL[3:0] 182

+0x01 CTRLB CCDEN CCCEN CCBEN CCAEN - WGMODE[2:0] 182

+0x02 CTRLC – – – – CMPD CMPC CMPB CMPA 183

+0x03 CTRLD EVACT[2:0] EVDLY EVSEL[3:0] 184

+0x04 CTRLE – – – – – – BYTEM 185

+0x05 Reserved – – – – – – – –

+0x06 INTCTRLA – – – – ERRINTLVL[1:0] OVINTLVL[1:0] 185

+0x07 INTCTRLB CCCINTLVL[1:0] CCCINTLVL[1:0] CCBINTLVL[1:0] CCAINTLVL[1:0] 185

+0x08 CTRLFCLR – – – – CMD[1:0] LUPD DIR 186

+0x09 CTRLFSET – – – – CMD[1:0] LUPD DIR 187

+0x0A CTRLGCLR – – – CCDBV CCCBV CCBBV CCABV PERBV 187

+0x0B CTRLGSET – – – CCDBV CCCBV CCBBV CCABV PERBV 187

+0x0C INTFLAGS CCDIF CCCIF CCBIF CCAIF – – ERRIF OVFIF 188

+0x0D Reserved – – – – – – – –

+0x0E Reserved – – – – – – – –

+0x0F TEMP TEMP[7:0] 188

+0x10 to +0x1F Reserved – – – – – – – –

+0x20 CNTL CNT[7:0] 189

+0x21 CNTH CNT[15:8] 189

+0x22 to +0x25 Reserved – – – – – – – –

+0x26 PERL PER[7:0] 189

+0x27 PERH PER[8:15] 190

+0x28 CCAL CCA[7:0] 190

+0x29 CCAH CCA[15:8] 190

+0x2A CCBL CCB[7:0] 190

+0x2B CCBH CCB[15:8] 190

+0x2C CCCL CCC[7:0] 190

+0x02D CCCH CCC[15:8] 190

+0x2E CCDL CCD[7:0] 190

+0x2F CCDH CCD[15:8] 190

+0x30 to +0x35 Reserved – – – – – – – –

+0x36 PERBUFL PERBUF[7:0] 190

+0x37 PERBUFH PERBUF[15:8] 191

+0x38 CCABUFL CCABUF[7:0] 191

+0x39 CCABUFH CCABUF[15:8] 191

+0x3A CCBBUFL CCBBUF[7:0] 191

+0x3B CCBBUFH CCBBUF[15:8] 191

+0x3C CCCBUFL CCCBUF[7:0] 191

+0x3D CCCBUFH CCCBUF[15:8] 191

+0x3E CCDBUFL CCDBUF[7:0] 191

+0x3F CCDBUFH CCDBUF[15:8] 191

Table 14-9. Timer/counter interrupt vectors and their word offset address.

Offset Source Interrupt Description

0x00 OVF_vect Timer/counter overflow/underflow interrupt vector offset

0x02 ERR_vect Timer/counter error interrupt vector offset

0x04 CCA_vect Timer/counter compare or capture channel A interrupt vector offset

0x06 CCB_vect Timer/counter compare or capture channel B interrupt vector offset

0x08 CCC_vect(1) Timer/counter compare or capture channel C interrupt vector offset

0x0A CCD_vect(1) Timer/counter compare or capture channel D interrupt vector offset
192
8331B–AVR–03/12

Atmel AVR XMEGA AU
15. TC2 – 16-bit Timer/Counter Type 2

15.1 Features
• A system of two eight-bit timer/counters

– Low-byte timer/counter
– High-byte timer/counter

• Eight compare channels
– Four compare channels for the low-byte timer/counter
– Four compare channels for the high-byte timer/counter

• Waveform generation
– Single slope pulse width modulation

• Timer underflow interrupts/events
• One compare match interrupt/event per compare channel for the low-byte timer/counter
• Can be used with the event system for count control
• Can be used to trigger DMA transactions

15.2 Overview
A timer/counter 2 is realized when a timer/counter 0 is set in split mode. It is a system of two
eight-bit timer/counters, each with four compare channels. This results in eight configurable
pulse width modulation (PWM) channels with individually controlled duty cycles, and is intended
for applications that require a high number of PWM channels.

The two eight-bit timer/counters in this system are referred to as the low-byte timer/counter and
high-byte timer/counter, respectively. The difference between them is that only the low-byte
timer/counter can be used to generate compare match interrupts, events and DMA triggers.

The two eight-bit timer/counters have a shared clock source and separate period and compare
settings. They can be clocked and timed from the peripheral clock, with optional prescaling, or
from the event system. The counters are always counting down.

The high resolution (hi-res) extension can be used to increase the waveform output resolution by
up to eight times by using an internal clock source running up to four times faster than the
peripheral clock.

The timer/counter 2 is set back to timer/counter 0 by setting it in normal mode; hence, one
timer/counter can exist only as either type 0 or type 2.

A detailed block diagram of the timer/counter 2 showing the low-byte (L) and high-byte (H)
timer/counter register split and compare modules is shown in Figure 15-1 on page 194.
193
8331B–AVR–03/12

Atmel AVR XMEGA AU
15.3 Block Diagram

Figure 15-1. Block diagram of the 16-bit timer/counter 0 with split mode.

15.4 Clock Sources
The timer/counter can be clocked from the peripheral clock (clkPER) and from the event system.
Figure 15-2 shows the clock and event selection.

Base Counter

Compare
(Unit x = {A,B,C,D})

Counter

HPER

= 0

Control Logic

CTRLA

HUNF
(INT/DMA Req.)

BOTTOML

LPER

Compare
(Unit x = {A,B,C,D})

Waveform
Generation

LCMPx
(INT/DMA
Req.)

OCLx Out

=

LCMPx

"match"

BOTTOMH

LCNT
"count low"
"load low"

=

HCMPx
Waveform
Generation

"match"

OCHx Out

= 0

"count high"
"load high"

HCNT

Clock Select

LUNF
(INT/DMA Req.)
194
8331B–AVR–03/12

Atmel AVR XMEGA AU
Figure 15-2. Clock selection.

The peripheral clock (clkPER) is fed into the common prescaler (common for all timer/counters in
a device). A selection of prescaler outputs from 1 to 1/1024 is directly available. In addition, the
whole range of time prescalings from 1 to 215 is available through the event system.

The clock selection (CLKSEL) selects one of the clock prescaler outputs or an event channel for
the high-byte counter (HCNT) and low-byte counter (LCNT). By using the event system, any
event source, such as an external clock signal, on any I/O pin can be used as the clock input.

By default, no clock input is selected, and the counters are not running.

15.5 Counter Operation
The counters will always count in single-slope mode. Each counter counts down for each clock
cycle until it reaches BOTTOM, and then reloads the counter with the period register value at the
following clock cycle.

Figure 15-3. Counter operation.

As shown in Figure 15-3, the counter can change the counter value while running. The write
access has higher priority than the count clear, and reloads and will be immediate.

15.5.1 Changing the Period
The counter period is changed by writing a new TOP value to the period register. Since the
counter is counting down, the period register can be written at any time without affecting the cur-
rent period, as shown in Figure 15-4 on page 196. This prevents wraparound and generation of
odd waveforms.

clkPER /
2{0,...,15}

CLKSEL

CNT

clkPER /
{1,2,4,8,64,256,1024}

Common
PrescalerclkPER

event channels

Event
System events

CNT

BOTTOM

MAX

"reload"
TOP

CNT written
195
8331B–AVR–03/12

Atmel AVR XMEGA AU
Figure 15-4. Changing the period.

15.6 Compare Channel
Each compare channel continuously compares the counter value with the CMPx register. If CNT
equals CMPx, the comparator signals a match. For the low-byte timer/counter, the match will set
the compare channel's interrupt flag at the next timer clock cycle, and the event and optional
interrupt is generated. The high-byte timer/counter does not have compare interrupt/event.

15.6.1 Waveform Generation
The compare channels can be used for waveform generation on the corresponding port pins. To
make the waveform visible on the connected port pin, the following requirements must be
fulfilled:

1. The compare channels to be used must be enabled. This will override the correspond-
ing port pin output register.

2. The direction for the associated port pin must be set to output.

Inverted waveform output can be achieved by setting invert I/O on the port pin. Refer to ”I/O
Ports” on page 143 for more details.

15.6.2 Single-slope PWM Generation
For PWM generation, the period (T) is controlled by the PER register, while the CMPx registers
control the duty cycle of the waveform generator (WG) output. Figure 15-5 on page 196 shows
how the counter counts from TOP to BOTTOM, and then restarts from TOP. The WG output is
set on the compare match between the CNT and CMPx registers, and cleared at BOTTOM.

Figure 15-5. Single-slope pulse width modulation.

CNT

MAX

New TOP written to
PER that is higher
than current CNT

New TOP written to
PER that is lower
than current CNT

"reload"

"write"

BOTTOM

CNT

MAX
TOP

Period (T) "match"

BOTTOM

WG Output

CMPx=BOT

CMPx

CMPx=TOP
196
8331B–AVR–03/12

Atmel AVR XMEGA AU
The PER register defines the PWM resolution. The minimum resolution is two bits
(PER=0x0003), and the maximum resolution is eight bits (PER=MAX).

The following equation is used to calculate the exact resolution for a single-slope PWM
(RPWM_SS) waveform:

The single, slow PWM frequency (fPWM_SS) depends on the period setting (PER) and the periph-
eral clock frequency (fPER), and it is calculated by using the following equation:

where N represents the prescaler divider used (1, 2, 4, 8, 64, 256, 1024, or event channel n).

15.6.3 Port Override for Waveform Generation
To make the waveform generation available on the port pins, the corresponding port pin direc-
tion must be set as output. The timer/counter will override the port pin values when the CMP
channel is enabled (LCMPENx/HCMPENx).

Figure 15-6 on page 197 shows the port override for the low- and high-byte timer/counters. For
the low-byte timer/counter, CMP channels A to D will override the output value (OUTxn) of port
pins 0 to 3 on the corresponding port pins (Pxn). For the high-byte timer/counter, CMP channels
E to H will override port pins 4 to 7. Enabling inverted I/O on the port pin (INVENxn) inverts the
corresponding WG output.

Figure 15-6. Port override for low- and high-byte timer/counters.

15.7 Interrupts and Events
The timer/counters can generate interrupts and events. The counter can generate an interrupt
on underflow, and each CMP channel for the low-byte counter has a separate compare interrupt.

Events will be generated for all conditions that can generate interrupts. For details on event gen-
eration and available events, refer to ”Event System” on page 71.

RPWM_SS
PER 1+()log

2()log
-----------------------------------=

fPWM_SS
fPER

N PER 1+()
-------------------------------=

OUT

 LCMPENx /
 HCMPENx

INVEN

OCxWaveform
197
8331B–AVR–03/12

Atmel AVR XMEGA AU
15.8 DMA Support
Timer/counter underflow and compare interrupt flags can trigger a DMA transaction. The
acknowledge condition that clears the flag/request is listed in Table 15-1 on page 198.

15.9 Timer/Counter Commands
A set of commands can be given to the timer/counter by software to immediately change the
state of the module. These commands give direct control of the update, restart, and reset
signals.

The software can force a restart of the current waveform period by issuing a restart command. In
this case the counter, direction, and all compare outputs are set to zero.

A reset command will set all timer/counter registers to their initial values. A reset can only be
given when the timer/counter is not running (OFF).

Table 15-1. DMA request sources.

Request Acknowledge Comment

LUNFIF DMAC writes to LCNT
DMAC writes to LPER

HUNFIF DMAC writes to HCNT
DMAC writes to HPER

CCIF{D,C,B,A} DMAC access of
LCMP{D,C,B,A}

Output compare operation
198
8331B–AVR–03/12

Atmel AVR XMEGA AU
15.10 Register Description

15.10.1 CTRLA – Control register A

• Bit 7:4 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

• Bit 3:0 – CLKSEL[3:0]: Clock Select
These bits select clock source for the timer/counter according to Table 15-2 on page 199. The
clock select is identical for both high- and low-byte timer/counters.

15.10.2 CTRLB – Control register B

• Bit 7:0 – HCMPENx/LCMPENx: High/Low Byte Compare Enable x
Setting these bits will enable the compare output and override the port output register for the
corresponding OCn output pin.

Bit 7 6 5 4 3 2 1 0

+0x00 – – – – CLKSEL[3:0] CTRLA

Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 15-2. Clock Select

CLKSEL[3:0] Group Configuration Description

0000 OFF None (i.e., timer/counter in OFF state)

0001 DIV1 Prescaler: ClkPER

0010 DIV2 Prescaler: ClkPER/2

0011 DIV4 Prescaler: ClkPER/4

0100 DIV8 Prescaler: ClkPER/8

0101 DIV64 Prescaler: ClkPER/64

0110 DIV256 Prescaler: ClkPER/256

0111 DIV1024 Prescaler: ClkPER/1024

1nnn EVCHn Event channel n, n= [0,...,7]

Bit 7 6 5 4 3 2 1 0

+0x01 HCMPEND HCMPENC HCMPENB HCMPENA LCMPEND LCMPENC LCMPENB LCMPENA CTRLB

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
199
8331B–AVR–03/12

Atmel AVR XMEGA AU
15.10.3 CTRLC – Control register C

• Bit 7:0 – HCMPx/LCMPx: High/Low Compare x Output Value
These bits allow direct access to the waveform generator's output compare value when the
timer/counter is OFF. This is used to set or clear the WG output value when the timer/counter is
not running.

15.10.4 CTRLE – Control register E

• Bit 7:2 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

• Bit 1:0 – BYTEM[1:0]: Byte Mode
These bits select the timer/counter operation mode according to Table 15-3 on page 200.

15.10.5 INTCTRLA – Interrupt Enable register A

• Bit 7:4 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

Bit 7 6 5 4 3 2 1 0

+0x02 HCMPD HCMPC HCMPB HCMPA LCMPD LCMPC LCMPB LCMPA CTRLC

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x04 – – – – – – BYTEM[1:0] CTRLE

Read/Write R R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 15-3. Byte Mode

BYTEM[1:0] Group Configuration Description

00 NORMAL Timer/counter is set to normal mode (timer/counter type 0)

01 BYTEMODE
Upper byte of the counter (HCNT) will be set to zero after
each counter clock.

10 SPLITMODE
Timer/counter is split into two eight-bit timer/counters
(timer/counter type 2)

11 — Reserved

Bit 7 6 5 4 3 2 1 0

+0x06 – – – – HUNFINTLVL[1:0] LUNFINTLVL[1:0] INTCTRLA

Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
200
8331B–AVR–03/12

Atmel AVR XMEGA AU
• Bit 3:2 – HUNFINTLVL[1:0]: High-byte Timer Underflow Interrupt Level
These bits enable the high-byte timer underflow interrupt and select the interrupt level, as
described in ”Interrupts and Programmable Multilevel Interrupt Controller” on page 134. The
enabled interrupt will be triggered when HUNFIF in the INTFLAGS register is set.

• Bit 1:0 – LUNFINTLVL[1:0]: Low-byte Timer Underflow Interrupt Level
These bits enable the low-byte timer underflow interrupt and select the interrupt level, as
described in ”Interrupts and Programmable Multilevel Interrupt Controller” on page 134. The
enabled interrupt will be triggered when LUNFIF in the INTFLAGS register is set.

15.10.6 INTCTRLB – Interrupt Enable register B

• Bit 7:0 – LCMPxINTLVL[1:0]: Low-byte Compare x Interrupt Level
These bits enable the low-byte timer compare interrupt and select the interrupt level, as
described in ”Interrupts and Programmable Multilevel Interrupt Controller” on page 134. The
enabled interrupt will be triggered when LCMPxIF in the INTFLAGS register is set.

15.10.7 CTRLF – Control register F

• Bit 7:4 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

• Bit 3:2 – CMD[1:0]: Timer/Counter Command
These command bits are used for software control of timer/counter update, restart, and reset.
The command bits are always read as zero. The CMD bits must be used together with CMDEN

Bit 7 6 5 4 3 2 1 0

+0x07 LCMPDINTLVL[1:0] LCMPCINTLVL[1:0] LCMPBINTLVL[1:0] LCMPAINTLVL[1:0] INTCTRLB

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x08 – – – – CMD[1:0] CMDEN[1:0] CTRLF

Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 15-4. Command selections

CMD Group Configuration Description

00 NONE None

01 — Reserved

10 RESTART Force restart

11 RESET Force hard reset (ignored if T/C is not in OFF state)
201
8331B–AVR–03/12

Atmel AVR XMEGA AU
• Bit 1:0 – CMDEN[1:0]: Command Enable
These bits are used to indicate for which timer/counter the command (CMD) is valid.

15.10.8 INTFLAGS – Interrupt Flag register

• Bit 7:4 – LCMPxIF: Compare Channel x Interrupt Flag
The compare interrupt flag (LCMPxIF) is set on a compare match on the corresponding CMP
channel.

For all modes of operation, LCMPxIF will be set when a compare match occurs between the
count register (LCNT) and the corresponding compare register (LCMPx). The LCMPxIF is auto-
matically cleared when the corresponding interrupt vector is executed. The flag can also be
cleared by writing a one to its bit location.

• Bit 3:2 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

• Bit 1 – HUNFIF: High-byte Timer Underflow Interrupt Flag
HUNFIF is set on a BOTTOM (underflow) condition. This flag is automatically cleared when the
corresponding interrupt vector is executed. The flag can also be cleared by writing a one to its bit
location.

• Bit 0 – LUNFIF: Low-byte Timer Underflow Interrupt Flag
LUNFIF is set on a BOTTOM (underflow) condition. This flag is automatically cleared when the
corresponding interrupt vector is executed. The flag can also be cleared by writing a one to its bit
location.

15.10.9 LCNT – Low-byte Count register

• Bit 7:0 – LCNT[7:0]
LCNT contains the eight-bit counter value for the low-byte timer/counter. The CPU and DMA
write accesses have priority over count, clear, or reload of the counter.

Table 15-5. Command selections.

CMD Group Configuration Description

00 — Reserved

01 LOW Command valid for low-byte T/C

10 HIGH Command valid for high-byte T/C

11 BOTH Command valid for both low-byte and high-byte T/C

Bit 7 6 5 4 3 2 1 0

+0x0C LCMPDIF LCMPCIF LCMPBIF LCMPAIF – – HUNFIF LUNFIF INTFLAGS

Read/Write R/W R/W R/W R/W R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x20 LCNT[7:0] LCNT

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
202
8331B–AVR–03/12

Atmel AVR XMEGA AU
15.10.10 HCNT – High-byte Count register

• Bit 7:0 – HCNT[7:0]
HCNT contains the eight-bit counter value for the high-byte timer/counter. The CPU and DMA
write accesses have priority over count, clear, or reload of the counter.

15.10.11 LPER – Low-byte Period register

• Bit 7:0 – LPER[7:0]
LPER contains the eight-bit period value for the low-byte timer/counter.

15.10.12 HPER – High-byte Period register

• Bit 7:0 – HPER[7:0]
HPER contains the eight-bit period for the high-byte timer/counter.

15.10.13 LCMPx – Low-byte Compare register x

• Bit 7:0 – LCMPx[7:0], x=[A, B, C, D]
LCMPx contains the eight-bit compare value for the low-byte timer/counter.

These registers are all continuously compared to the counter value. Normally, the outputs from
the comparators are then used for generating waveforms.

Bit 7 6 5 4 3 2 1 0

+0x21 HCNT[7:0] HCNT

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x27 LPER[7:0] LPER

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x26 HPER[7:0] HPER

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

LCMPx[7:0] LCMPx

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
203
8331B–AVR–03/12

Atmel AVR XMEGA AU
15.10.14 HCMPx – High-byte Compare register x

• Bit 7:0 – HCMPx[7:0], x=[A, B, C, D]
HCMPx contains the eight-bit compare value for the high-byte timer/counter.

These registers are all continuously compared to the counter value. Normally the outputs from
the comparators are then used for generating waveforms.

Bit 7 6 5 4 3 2 1 0

HCMPx[7:0] HCMPx

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
204
8331B–AVR–03/12

Atmel AVR XMEGA AU
15.11 Register Summary

15.12 Interrupt Vector Summary

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page
+0x00 CTRLA – – – – CLKSEL[3:0] 199

+0x01 CTRLB HCMPDEN HCMPCEN HCMPBEN HCMPAEN LCMPDEN LCMPCEN LCMPBEN LCMPAEN 199

+0x02 CTRLC HCMPD HCMPC HCMPB HCMPA LCMPD LCMPC LCMPB LCMPA 200

+0x03 Reserved – – – – – – – –

+0x04 CTRLE – – – – – – BYTEM[1:0] 200

+0x05 Reserved – – – – – – – –

+0x06 INTCTRLA – – – – HUNFINTLVL[1:0] LUNFINTLVL[1:0] 200

+0x07 INTCTRLB LCMPDINTLVL[1:0] LCMPCINTLVL[1:0] LCMPBINTLVL[1:0] LCMPAINTLVL[1:0] 201

+0x08 Reserved – – – – – – – –

+0x09 CTRLF – – – – CMD[1:0] CMDEN[1:0] 201

+0x0A Reserved – – – – – – – –

+0x0B Reserved – – – – – – – –

+0x0C INTFLAGS LCMPDIF LCMPCIF LCMPBIF LCMPAIF – – HUNFIF LUNFIF 202

+0x0D Reserved – – – – – – – –

+0x0E Reserved – – – – – – – –

+0x0F Reserved – – – – – – – –

+0x10 to +0x1F Reserved – – – – – – – –

+0x20 LCNT Low-byte Timer/Counter Count Register 203

+0x21 HCNT High-byte Timer/Counter Count Register 203

+0x22 to +0x25 Reserved – – – – – – – –

+0x26 LPER Low-byte Timer/Counter Period Register 203

+0x27 HPER High-byte Timer/Counter Period Register 204

+0x28 LCMPA Low-byte Compare Register A 203

+0x29 HCMPA High-byte Compare Register A 204

+0x2A LCMPB Low-byte Compare Register B 203

+0x2B HCMPB High-byte Compare Register B 204

+0x2C LCMPC Low-byte Compare Register C 203

+0x02D HCMPC High-byte Compare Register C 204

+0x2E LCMPD Low-byte Compare Register D 203

+0x2F HCMPD High-byte Compare Register D 204

+0x30 to +0x3F Reserved – – – – – – – –

Table 15-6. Timer/counter interrupt vectors and their word offset addresses.

Offset Source Interrupt Description

0x00 LUNF_vect Low-byte Timer/counter underflow interrupt vector offset

0x02 HUNF_vect High-byte Timer/counter underflow interrupt vector offset

0x4 LCMPA_vect Low-byte Timer/counter compare channel A interrupt vector offset

0x6 LCMPB_vect Low-byte Timer/counter compare channel B interrupt vector offset

0x8 LCMPC_vect Low-byte Timer/counter compare channel C interrupt vector offset

0x0A LCMPD_vect Low-byte Timer/counter compare channel D interrupt vector offset
205
8331B–AVR–03/12

Atmel AVR XMEGA AU
16. AWeX – Advanced Waveform Extension

16.1 Features
• Waveform output with complementary output from each compare channel
• Four dead-time insertion (DTI) units

– 8-bit resolution
– Separate high and low side dead-time setting
– Double buffered dead time
– Optionally halts timer during dead-time insertion

• Pattern generation unit creating synchronised bit pattern across the port pins
– Double buffered pattern generation
– Optional distribution of one compare channel output across the port pins

• Event controlled fault protection for instant and predictable fault triggering

16.2 Overview
The advanced waveform extension (AWeX) provides extra functions to the timer/counter in
waveform generation (WG) modes. It is primarily intended for use with different types of motor
control and other power control applications. It enables low- and high side output with dead-time
insertion and fault protection for disabling and shutting down external drivers. It can also gener-
ate a synchronized bit pattern across the port pins.

Figure 16-1. Advanced waveform extention and closely related peripherals (grey).

As shown in Figure 16-1 on page 206, each of the waveform generator outputs from timer/coun-
ter 0 are split into a complimentary pair of outputs when any AWeX features are enabled. These

Timer/Counter 0

AWeX

WG
Channel A

DTI
Channel A

WG
Channel B

DTI
Channel B

WG
Channel C

DTI
Channel C

WG
Channel D

DTI
Channel D

Port
Override

Pattern
Generation

Px0

Px1

Px2

Px3

Px4

Px5

Px6

Px7

Event
System

Fault
Protection
206
8331B–AVR–03/12

Atmel AVR XMEGA AU
output pairs go through a dead-time insertion (DTI) unit that generates the non-inverted low side
(LS) and inverted high side (HS) of the WG output with dead-time insertion between LS and HS
switching. The DTI output will override the normal port value according to the port override set-
ting. Refer to ”I/O Ports” on page 143 for more details.

The pattern generation unit can be used to generate a synchronized bit pattern on the port it is
connected to. In addition, the WG output from compare channel A can be distributed to and
override all the port pins. When the pattern generator unit is enabled, the DTI unit is bypassed.

The fault protection unit is connected to the event system, enabling any event to trigger a fault
condition that will disable the AWeX output. The event system ensures predictable and instant
fault reaction, and gives flexibility in the selection of fault triggers.

16.3 Port Override
The port override logic is common for all the timer/counter extensions. Figure 16-2 on page 208
shows a schematic diagram of the port override logic. When the dead-time enable (DTIENx) bit
is set, the timer/counter extension takes control over the pin pair for the corresponding channel.
Given this condition, the output override enable (OOE) bits take control over the CCxEN bits.
207
8331B–AVR–03/12

Atmel AVR XMEGA AU
Figure 16-2. Timer/counter extensions and port override logic.

16.4 Dead-time Insertion
The dead-time insertion (DTI) unit generates OFF time where the non-inverted low side (LS) and
inverted high side (HS) of the WG output are both low. This OFF time is called dead time, and
dead-time insertion ensures that the LS and HS never switch simultaneously.

OUT0

OUTOVEN0

CCAEN

DTICCAEN

INVEN0

OUT1

OUTOVEN1

CCBEN INVEN1

Px0

Px1

Channel
A

DTI

LS

HS

OC0A

OC0B

OCALS

OCAHS

WG 0A

WG 0B

WG 0A

CWCM

OUT2

OUTOVEN2

CCCEN

DTICCBEN

INVEN2

OUT3

OUTOVEN3

CCDEN INVEN3

Px2

Px3

Channel
B

DTI

LS

HS

OC0C

OC0D

OCBLS

OCBHS

WG 0C

WG 0D

OUT4

OUTOVEN4

CCAEN

DTICCCEN

INVEN4

OUT5

OUTOVEN5

CCBEN INVEN5

Px4

Px5

Channel
C

DTI

LS

HS

OC1A

OC1B

OCCLS

OCCHS

WG 1A

WG 1B

OUT6

OUTOVEN6

DTICCDEN

INVEN6

OUT7

OUTOVEN7

INVEN7

Px6

Px7

Channel
D

DTI

LS

HS

OCDLS

OCDHS

WG 0B

WG 0D

WG 0C

"0"

"0"
208
8331B–AVR–03/12

Atmel AVR XMEGA AU
The DTI unit consists of four equal dead-time generators, one for each compare channel in
timer/counter 0. Figure 16-3 on page 209 shows the block diagram of one DTI generator. The
four channels have a common register that controls the dead time. The high side and low side
have independent dead-time setting, and the dead-time registers are double buffered.

Figure 16-3. Dead-time generator block diagram.

As shown in Figure 16-4 on page 209, the 8-bit dead-time counter is decremented by one for
each peripheral clock cycle, until it reaches zero. A nonzero counter value will force both the low
side and high side outputs into their OFF state. When a change is detected on the WG output,
the dead-time counter is reloaded according to the edge of the input. A positive edge initiates a
counter reload of the DTLS register, and a negative edge a reload of DTHS register.

Figure 16-4. Dead-time generator timing diagram.

16.5 Pattern Generation
The pattern generator unit reuses the DTI registers to produce a synchronized bit pattern across
the port it is connected to. In addition, the waveform generator output from compare channel A
(CCA) can be distributed to and override all the port pins. These features are primarily intended
for handling the commutation sequence in brushless DC motor (BLDC) and stepper motor appli-

Dead Time Generator

Edge Detect

BV BV

D Q

= 0

DTLSBUF

DTLS

DTHSBUF

DTHS

"DTLS"
(To PORT)

"DTHS"
(To PORT)

CounterEN
LOAD

WG output

"dti_cnt"

"WG output"

"DTLS"

"DTHS"

tDTILS tDTIHS

T
tP
209
8331B–AVR–03/12

Atmel AVR XMEGA AU
cations. A block diagram of the pattern generator is shown in ”Pattern generator block diagram.”
on page 210. For each port pin where the corresponding OOE bit is set, the multiplexer will out-
put the waveform from CCA.

Figure 16-5. Pattern generator block diagram.

As with the other timer/counter double buffered registers, the register update is synchronized to
the UPDATE condition set by the waveform generation mode. If the synchronization provided is
not required by the application, the application code can simply access the DTIOE and PORTx
registers directly.

The pin directions must be set for any output from the pattern generator to be visible on the port.

16.6 Fault Protection
The fault protection feature enables fast and deterministic action when a fault is detected. The
fault protection is event controlled. Thus, any event from the event system can be used to trigger
a fault action, such as over-current indication from analog comparator or ADC measurements.

When fault protection is enabled, an incoming event from any of the selected event channels
can trigger the event action. Each event channel can be separately enabled as a fault protection
input, and the specified event channels will be ORed together, allowing multiple event sources to
be used for fault protection at the same time.

16.6.1 Fault Actions
When a fault is detected, the direction clear action will clear the direction (DIR) register in the
associated port, setting all port pins as tri-stated inputs.

The fault detection flag is set, the timer/counter’s error interrupt flag is set, and the optional inter-
rupt is generated.

There is maximum of two peripheral clock cycles from when an event occurs in a peripheral until
the fault protection triggers the event action. Fault protection is fully independent of the CPU and
DMA, but requires the peripheral clock to run.

Timer/Counter 0 (TCx0)

BV BVDTLSBUF

OUTOVEN

DTHSBUF

OUTx

CCA WG outputUPDATE

ENEN

1 to 8
Expand

Px[7:0]
210
8331B–AVR–03/12

Atmel AVR XMEGA AU
16.6.2 Fault Restore Modes
How the AWeX and timer/counter return from the fault state to normal operation after a fault,
when the fault condition is no longer active, can be selected from one of two different modes:

• In latched mode, the waveform output will remain in the fault state until the fault condition is
no longer active and the fault detect flag has been cleared by software. When both of these
conditions are met, the waveform output will return to normal operation at the next UPDATE
condition.

• In cycle-by-cycle mode the waveform output will remain in the fault state until the fault
condition is no longer active. When this condition is met, the waveform output will return to
normal operation at the next UPDATE condition.

When returning from a fault state the DIR[7:0] bits corresponding to the enabled DTI channels
are restored. OUTOVEN is unaffected by the fault except that writing to the register from soft-
ware is blocked.

The UPDATE condition used to restore normal operation is the same as the one in the
timer/counter.

16.6.3 Change Protection
To avoid unintentional changes in the fault protection setup, all the control registers in the AWeX
extension can be protected by writing the corresponding lock bit in the advanced waveform
extension lock register. For more details, refer to ”I/O Memory Protection” on page 25 and
”AWEXLOCK – Advanced Waveform Extension Lock register” on page 49.

When the lock bit is set, control register A, the output override enable register, and the fault
detection event mask register cannot be changed.

To avoid unintentional changes in the fault event setup, it is possible to lock the event system
channel configuration by writing the corresponding event system lock register. For more details,
refer to ”I/O Memory Protection” on page 25 and ”EVSYSLOCK – Event System Lock register”
on page 49.

16.6.4 On-Chip Debug
When fault detection is enabled, an on-chip debug (OCD) system receives a break request from
the debugger, which will by default function as a fault source. When an OCD break request is
received, the AWeX and corresponding timer/counter will enter a fault state, and the specified
fault action will be performed.

After the OCD exits from the break condition, normal operation will be started again. In cycle-by-
cycle mode, the waveform output will start on the first UPDATE condition after exit from break,
while in latched mode, the fault condition flag must be cleared in software before the output will
be restored. This feature guarantees that the output waveform enters a safe state during a
break.

It is possible to disable this feature.
211
8331B–AVR–03/12

Atmel AVR XMEGA AU
16.7 Register Description

16.7.1 CTRL – Control register

• Bit 7:6 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

• Bit 5 – PGM: Pattern Generation Mode
Setting this bit enables the pattern generation mode. This will override the DTI, and the pattern
generation reuses the dead-time registers for storing the pattern.

• Bit 4 – CWCM: Common Waveform Channel Mode
If this bit is set, the CC channel A waveform output will be used as input for all the dead-time
generators. CC channel B, C, and D waveforms will be ignored.

• Bit 3:0 – DTICCxEN: Dead-Time Insertion CCx Enable
Setting these bits enables the dead-time generator for the corresponding CC channel. This will
override the timer/counter waveform outputs.

16.7.2 FDEMASK – Fault Detect Event Mask register

• Bit 7:0 – FDEVMASK[7:0]: Fault Detect Event Mask
These bits enable the corresponding event channel as a fault condition input source. Events
from all event channels will be ORed together, allowing multiple sources to be used for fault
detection at the same time. When a fault is detected, the fault detect flag (FDF) is set and the
fault detect action (FDACT) will be performed.

16.7.3 FDCTRL - Fault Detection Control register

Bit 7 6 5 4 3 2 1 0

+0x00 – – PGM CWCM DTICCDEN DTICCCEN DTICCBEN DTICCAEN CTRL

Read/Write R R R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x02 FDEVMASK[7:0] FDEMASK

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x03 – – – FDDBD – FDMODE FDACT[1:0] FDCTRL

Read/Write R R R R/W R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
212
8331B–AVR–03/12

Atmel AVR XMEGA AU
• Bit 7:5 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

• Bit 4 – FDDBD: Fault Detection on Debug Break Detection
By default, when this bit is cleared and fault protection is enabled, and OCD break request is
treated as a fault. When this bit is set, an OCD break request will not trigger a fault condition.

• Bit 3 – Reserved
This bit is unused and reserved for future use. For compatibility with future devices, always write
this bit to zero when this register is written.

• Bit 2 – FDMODE: Fault Detection Restart Mode
This bit sets the fault protection restart mode. When this bit is cleared, latched mode is used,
and when it is set, cycle-by-cycle mode is used.

In latched mode, the waveform output will remain in the fault state until the fault condition is no
longer active and the FDF has been cleared by software. When both conditions are met, the
waveform output will return to normal operation at the next UPDATE condition.

In cycle-by-cycle mode, the waveform output will remain in the fault state until the fault condition
is no longer active. When this condition is met, the waveform output will return to normal opera-
tion at the next UPDATE condition.

• Bit 1:0 – FDACT[1:0]: Fault Detection Action
These bits define the action performed, according to Table 16-1, when a fault condition is
detected.

16.7.4 STATUS – Status register

• Bit 7:3 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

Table 16-1. Fault actions

FDACT[1:0] Group Configuration Description

00 NONE None (fault protection disabled)

01 Reserved

10 Reserved

11 CLEARDIR Clear all direction (DIR) bits which correspond to the
enabled DTI channel(s); i.e., tri-state the outputs

Bit 7 6 5 4 3 2 1 0

+0x04 – – – – – FDF DTHSBUFV DTLSBUFV STATUS

Read/Write R R R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
213
8331B–AVR–03/12

Atmel AVR XMEGA AU
• Bit 2 – FDF: Fault Detect Flag
This flag is set when a fault detect condition is detected; i.e., when an event is detected on one
of the event channels enabled by FDEVMASK. This flag is cleared by writing a one to its bit
location.

• Bit 1 – DTHSBUFV: Dead-time High Side Buffer Valid
If this bit is set, the corresponding DT buffer is written and contains valid data that will be copied
into the DTLS register on the next UPDATE condition. If this bit is zero, no action will be taken.
The connected timer/counter unit’s lock update (LUPD) flag also affects the update for dead-
time buffers.

• Bit 0 – DTLSBUFV: Dead-time Low Side Buffer Valid
If this bit is set, the corresponding DT buffer is written and contains valid data that will be copied
into the DTHS register on the next UPDATE condition. If this bit is zero, no action will be taken.
The connected timer/counter unit's lock update (LUPD) flag also affects the update for dead-
time buffers.

16.7.5 DTBOTH – Dead-time Concurrent Write to Both Sides

• Bit 7:0 – DTBOTH: Dead-time Both Sides
Writing to this register will update the DTHS and DTLS registers at the same time (i.e., at the
same I/O write access).

16.7.6 DTBOTHBUF – Dead-time Concurrent Write to Both Sides Buffer register

• Bit 7:0 – DTBOTHBUF: Dead-time Both Sides Buffer
Writing to this memory location will update the DTHSBUF and DTLSBUF registers at the same
time (i.e., at the same I/O write access).

16.7.7 DTLS – Dead-time Low Side register

Bit 7 6 5 4 3 2 1 0

+0x06 DTBOTH[7:0] DTBOTH

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x07 DTBOTHBUF[7:0] DTBOTHBUF

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x08 DTLS[7:0] DTLS

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
214
8331B–AVR–03/12

Atmel AVR XMEGA AU
• Bit 7:0 – DTLS: Dead-time Low Side
This register holds the number of peripheral clock cycles for the dead-time low side.

16.7.8 DTHS – Dead-time High Side register

• Bit 7:0 – DTHS: Dead-time High Side
This register holds the number of peripheral clock cycles for the dead-time high side.

16.7.9 DTLSBUF – Dead-time Low Side Buffer register

• Bit 7:0 – DTLSBUF: Dead-time Low Side Buffer
This register is the buffer for the DTLS register. If double buffering is used, valid content in this
register is copied to the DTLS register on an UPDATE condition.

16.7.10 DTHSBUF – Dead-time High Side Buffer register

• Bit 7:0 – DTHSBUF: Dead-time High Side Buffer
This register is the buffer for the DTHS register. If double buffering is used, valid content in this
register is copied to the DTHS register on an UPDATE condition.

16.7.11 OUTOVEN – Output Override Enable register

Note: 1. Can be written only if the fault detect flag (FDF) is zero.

Bit 7 6 5 4 3 2 1 0

+0x09 DTHS[7:0] DTHS

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x0A DTLSBUF[7:0] DTLSBUF

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x0B DTHSBUF[7:0] DTHSBUF

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x0C OUTOVEN[7:0] OUTOVEN

Read/Write R/W(1) R/W(1) R/W(1) R/W(1) R/W(1) R/W(1) R/W(1) R/W(1)

Initial Value 0 0 0 0 0 0 0 0
215
8331B–AVR–03/12

Atmel AVR XMEGA AU
• Bit 7:0 – OUTOVEN[7:0]: Output Override Enable
These bits enable override of the corresponding port output register (i.e., one-to-one bit relation
to pin position). The port direction is not overridden.

16.8 Register Summary
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page

+0x00 CTRL – – PGM CWCM DTICDAEN DTICCCEN DTICCBEN DTICCAEN 212

+0x01 Reserved – – – – – – – –

+0x02 FDEMASK FDEVMASK[7:0] 212

+0x03 FDCTRL – – – FDDBD – FDMODE FDACT[1:0] 212

+0x04 STATUS – – – – – FDF DTBHSV DTBLSV 213

+0x05 Reserved – – – – – – – –

+0x06 DTBOTH DTBOTH[7:0] 214

+0x07 DTBOTHBUF DTBOTHBUF[7:0] 214

+0x08 DTLS DTLS[7:0] 214

+0x09 DTHS DTHS[7:0] 215

+0x0A DTLSBUF DTLSBUF[7:0] 215

+0x0B DTHSBUF DTHSBUF[7:0] 215

+0x0C OUTOVEN OUTOVEN[7:0] 215
216
8331B–AVR–03/12

Atmel AVR XMEGA AU
17. Hi-Res – High-Resolution Extension

17.1 Features
• Increases waveform generator resolution up to 8x (3 bits)
• Supports frequency, single-slope PWM, and dual-slope PWM generation
• Supports the AWeX when this is used for the same timer/counter

17.2 Overview
The high-resolution (hi-res) extension can be used to increase the resolution of the waveform
generation output from a timer/counter by four or eight. It can be used for a timer/counter doing
frequency, single-slope PWM, or dual-slope PWM generation. It can also be used with the
AWeX if this is used for the same timer/counter.
The hi-res extension uses the peripheral 4x clock (ClkPER4). The system clock prescalers must

be configured so the peripheral 4x clock frequency is four times higher than the peripheral and
CPU clock frequency when the hi-res extension is enabled. Refer to ”System Clock Selection
and Prescalers” on page 87 for more details.

Figure 17-1. Timer/counter operation with hi-res extension enabled.

When the hi-res extension is enabled, the timer/counter must run from a non-prescaled periph-
eral clock. The timer/counter will ignore its two least-significant bits (lsb) in the counter, and
counts by four for each peripheral clock cycle. Overflow/underflow and compare match of the 14
most-significant bits (msb) is done in the timer/counter. Count and compare of the two lsb is han-
dled and compared in the hi-res extension running from the peripheral 4x clock.

The two lsb of the timer/counter period register must be set to zero to ensure correct operation.
If the count register is read from the application code, the two lsb will always be read as zero,
since the timer/counter run from the peripheral clock. The two lsb are also ignored when gener-
ating events.

When the hi-res plus feature is enabled, the function is the same as with the hi-res extension,
but the resolution will increase by eight instead of four. This also means that the 3 lsb are han-
dled by the hi-res extension instead of 2 lsb, as when only hi-res is enabled. The extra resolution
is achieved by counting on both edges of the peripheral 4x clock.

CNT[15:2]

HiRes

CCxBUF[15:0]

== 0

" match"=

PER[15:2] 0

Waveform
Generation

TOPBOTTOM

Time /Counter

CCx[15:2] [1:0]

2 2 2

0

AWeX

Fault
Protection

Dead - Time
Insertion

Pattern
Generation

clkPER clkPER4

Pxn
217
8331B–AVR–03/12

Atmel AVR XMEGA AU
The hi-res extension will not output any pulse shorter than one peripheral clock cycle; i.e., a
compare value lower than four will have no visible output.

17.3 Register Description

17.3.1 CTRLA – Control register A

• Bit 7:3 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

• Bit 2 – HRPLUS: High Resolution Plus
Setting this bit enables high resolution plus. Hi-res plus is the same as hi-res, but will increase
the resolution by eight (3 bits) instead of four.

The extra resolution is achieved by operating at both edges of the peripheral 4x clock.

• Bit 1:0 – HREN[1:0]: High Resolution Enable
These bits enables the high-resolution mode for a timer/counter according to Table 17-1.

Setting one or both HREN bits will enable high-resolution waveform generation output for the
entire general purpose I/O port. This means that both timer/counters connected to the same port
must enable hi-res if both are used for generating PWM or FRQ output on pins.

17.4 Register Summary

Bit 7 6 5 4 3 2 1 0

+0x00 – – – – – HRPLUS HREN[1:0] CTRLA

Read/Write R R R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 17-1. High Resolution Enable

HREN[1:0] High Resolution Enabled

00 None

01 Timer/counter 0

10 Timer/counter 1

11 Both timer/counters

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page
+0x00 CTRLA – – – – – HRPLUS HREN[1:0] 218
218
8331B–AVR–03/12

Atmel AVR XMEGA AU
18. RTC – Real-Time Counter

18.1 Features
• 16-bit resolution
• Selectable clock source

– 32.768kHz external crystal
– External clock
– 32.768kHz internal oscillator
– 32kHz internal ULP oscillator

• Programmable 10-bit clock prescaling
• One compare register
• One period register
• Clear counter on period overflow
• Optional interrupt/event on overflow and compare match

18.2 Overview

The 16-bit real-time counter (RTC) is a counter that typically runs continuously, including in low-
power sleep modes, to keep track of time. It can wake up the device from sleep modes and/or
interrupt the device at regular intervals.

The reference clock is typically the 1.024kHz output from a high-accuracy crystal of 32.768kHz,
and this is the configuration most optimized for low power consumption. The faster 32.768kHz
output can be selected if the RTC needs a resolution higher than 1ms. The RTC can also be
clocked from an external clock signal, the 32.768kHz internal oscillator or the 32kHz internal
ULP oscillator.

The RTC includes a 10-bit programmable prescaler that can scale down the reference clock
before it reaches the counter. A wide range of resolutions and time-out periods can be config-
ured. With a 32.768kHz clock source, the maximum resolution is 30.5µs, and time-out periods
can range up to 2000 seconds. With a resolution of 1s, the maximum timeout period is more
than18 hours (65536 seconds). The RTC can give a compare interrupt and/or event when the
counter equals the compare register value, and an overflow interrupt and/or event when it
equals the period register value.

Figure 18-1. Real-time counter overview.

32.768kHz Crystal Osc

32.768kHz Int. Osc

TOSC1

TOSC2

External Clock

D
IV

32

D
IV

32

32kHz int ULP (DIV32)

RTCSRC

10-bit
prescaler

clkRTC

CNT

PER

COMP

=

=

”match”/
Compare

TOP/
Overflow
219
8331B–AVR–03/12

Atmel AVR XMEGA AU
18.2.1 Clock Domains

The RTC is asynchronous, operating from a different clock source independently of the main
system clock and its derivative clocks, such as the peripheral clock. For control and count regis-
ter updates, it will take a number of RTC clock and/or peripheral clock cycles before an updated
register value is available in a register or until a configuration change has effect on the RTC.
This synchronization time is described for each register. Refer to ”RTCCTRL – RTC Control reg-
ister” on page 94 for selecting the asynchronous clock source for the RTC.

18.2.2 Interrupts and Events

The RTC can generate both interrupts and events. The RTC will give a compare interrupt and/or
event at the first count after the counter value equals the Compare register value. The RTC will
give an overflow interrupt request and/or event at the first count after the counter value equals
the Period register value. The overflow will also reset the counter value to zero.

Due to the asynchronous clock domain, events will be generated only for every third overflow or
compare match if the period register is zero. If the period register is one, events will be gener-
ated only for every second overflow or compare match. When the period register is equal to or
above two, events will trigger at every overflow or compare match, just as the interrupt request.
220
8331B–AVR–03/12

Atmel AVR XMEGA AU
18.3 Register Descriptions

18.3.1 CTRL – Control register

• Bit 7:3 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

• Bit 2:0 – PRESCALER[2:0]: Clock Prescaling factor
These bits define the prescaling factor for the RTC clock according to Table 18-1 on page 221.

Bit 7 6 5 4 3 2 1 0

+0x00 – – – – – PRESCALER[2:0] CTRL

Read/Write R R R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 18-1. Real-time counter clock prescaling factor.

PRESCALER[2:0] Group Configuration RTC Clock Prescaling

000 OFF No clock source, RTC stopped

001 DIV1 RTC clock / 1 (no prescaling)

010 DIV2 RTC clock / 2

011 DIV8 RTC clock / 8

100 DIV16 RTC clock / 16

101 DIV64 RTC clock / 64

110 DIV256 RTC clock / 256

111 DIV1024 RTC clock / 1024
221
8331B–AVR–03/12

Atmel AVR XMEGA AU
18.3.2 STATUS – Status register

• Bit 7:1 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

• Bit 0 – SYNCBUSY: Synchronization Busy Flag
This flag is set when the CNT, CTRL, PER, or COMP register is busy synchronizing between the
RTC clock and system clock domains. THis flag is automatically cleared when the synchronisa-
tion is complete

18.3.3 INTCTRL – Interrupt Control register

• Bit 7:4 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

• Bit 3:2 – COMPINTLVL[1:0]: Compare Match Interrupt Enable
These bits enable the RTC compare match interrupt and select the interrupt level, as described
in ”Interrupts and Programmable Multilevel Interrupt Controller” on page 134. The enabled inter-
rupt will trigger when COMPIF in the INTFLAGS register is set.

• Bit 1:0 – OVFINTLVL[1:0]: Overflow Interrupt Enable
These bits enable the RTC overflow interrupt and select the interrupt level, as described in
”Interrupts and Programmable Multilevel Interrupt Controller” on page 134. The enabled interrupt
will trigger when OVFIF in the INTFLAGS register is set.

Bit 7 6 5 4 3 2 1 0

+0x01 – – – – – – – SYNCBUSY STATUS

Read/Write R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x02 – – – – COMPINTLVL[1:0] OVFINTLVL[1:0] INTCTRL

Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
222
8331B–AVR–03/12

Atmel AVR XMEGA AU
18.3.4 INTFLAGS – Interrupt Flag register

• Bit 7:2 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

• Bit 1 – COMPIF: Compare Match Interrupt Flag
This flag is set on the next count after a compare match condition occurs. It is cleared automati-
cally when the RTC compare match interrupt vector is executed. The flag can also be cleared by
writing a one to its bit location.

• Bit 0 – OVFIF: Overflow Interrupt Flag
This flag is set on the next count after an overflow condition occurs. It is cleared automatically
when the RTC overflow interrupt vector is executed. The flag can also be cleared by writing a
one to its bit location.

18.3.5 TEMP – Temporary Register

• Bit 7:0 – TEMP[7:0]: Real-Time Counter Temporary Register
This register is used for 16-bit access to the counter value, compare value, and TOP value reg-
isters. The low byte of the 16-bit register is stored here when it is written by the CPU. The high
byte of the 16-bit register is stored when the low byte is read by the CPU. For more details, refer
to ”Accessing 16-bit Registers” on page 13.

18.3.6 CNTL – Counter Register Low
The CNTH and CNTL register pair represents the 16-bit value, CNT. CNT counts positive clock
edges on the prescaled RTC clock. Reading and writing 16-bit values requires special attention.
Refer to ”Accessing 16-bit Registers” on page 13 for details.

Due to synchronization between the RTC clock and system clock domains, there is a latency of
two RTC clock cycles from updating the register until this has an effect. Application software
needs to check that the SYNCBUSY flag in the ”STATUS – Status register” on page 222 is
cleared before writing to this register.

Bit 7 6 5 4 3 2 1 0

+0x03 – – – – – – COMPIF OVFIF INTFLAGS

Read/Write R R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x04 TEMP[7:0] TEMP

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x08 CNT[7:0] CNTL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
223
8331B–AVR–03/12

Atmel AVR XMEGA AU
• Bit 7:0 – CNT[7:0]: Counter Value Low
These bits hold the LSB of the 16-bit real-time counter value.

18.3.7 CNTH – Counter Register High

• Bit 7:0 – CNT[15:8]: Counter Value High
These bits hold the MSB of the 16-bit real-time counter value.

18.3.8 PERL – Period Register Low
The PERH and PERL register pair represents the 16-bit value, PER. PER is constantly com-
pared with the counter value (CNT). A match will set OVFIF in the INTFLAGS register and clear
CNT. Reading and writing 16-bit values requires special attention. Refer to ”Accessing 16-bit
Registers” on page 13 for details.

Due to synchronization between the RTC clock and system clock domains, there is a latency of
two RTC clock cycles from updating the register until this has an effect. Application software
needs to check that the SYNCBUSY flag in the ”STATUS – Status register” on page 222 is
cleared before writing to this register.

• Bit 7:0 – PER[7:0]: Period Low
These bits hold the LSB of the 16-bit RTC TOP value.

18.3.9 PERH – Period Register High

• Bits 7:0 – PER[15:8]: Period High
These bits hold the MSB of the 16-bit RTC TOP value.

Bit 7 6 5 4 3 2 1 0

+0x09 CNT[15:8] CNTH

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x0A PER[7:0] PERL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 1 1 1 1 1 1 1 1

Bit 7 6 5 4 3 2 1 0

+0x0B PER[15:8] PERH

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 1 1 1 1 1 1 1 1
224
8331B–AVR–03/12

Atmel AVR XMEGA AU
18.3.10 COMPL – Compare Register Low
The COMPH and COMPL register pair represent the 16-bit value, COMP. COMP is constantly
compared with the counter value (CNT). A compare match will set COMPIF in the INTFLAGS
register. Reading and writing 16-bit values requires special attention. Refer ”Accessing 16-bit
Registers” on page 13 for details.

Due to synchronization between the RTC clock and system clock domains, there is a latency of
two RTC clock cycles from updating the register until this has an effect. Application software
needs to check that the SYNCBUSY flag in the ”STATUS – Status register” on page 222 is
cleared before writing to this register.

If the COMP value is higher than the PER value, no RTC compare match interrupt requests or
events will ever be generated.

• Bit 7:0 – COMP[7:0]: Compare Register Low
These bits hold the LSB of the 16-bit RTC compare value.

18.3.11 COMPH – Compare Register High

• Bit 7:0 – COMP[15:8]: Compare Register High
These bits hold the MSB of the 16-bit RTC compare value.

Bit 7 6 5 4 3 2 1 0

+0x0C COMP[7:0] COMPL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x0D COMP[15:8] COMPH

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
225
8331B–AVR–03/12

Atmel AVR XMEGA AU
18.4 Register Summary

18.5 Interrupt Vector Summary

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page
+0x00 CTRL – – – – – PRESCALER[2:0] 221

+0x01 STATUS – – – – – – – SYNCBUSY 222

+0x02 INTCTRL – – – – COMPINTLVL[1:0] OVFINTLVL[1:0] 222

+0x03 INTFLAGS – – – – – – COMPIF OVFIF 223

+0x04 TEMP TEMP[7:0] 223

+0x08 CNTL CNT[7:0] 224

+0x09 CNTH CNT[15:8] 223

+0x0A PERL PER[7:0] 224

+0x0B PERH PER[15:8] 224

+0x0C COMPL COMP[7:0] 225

+0x0D COMPH COMP[15:8] 225

Table 18-2. RTC interrupt vectors and their word offset.

Offset Source Interrupt Description

0x00 OVF_vect Real-time counter overflow interrupt vector

0x02 COMP_vect Real-time counter compare match interrupt vector
226
8331B–AVR–03/12

Atmel AVR XMEGA AU
19. RTC32 – 32-bit Real-Time Counter

19.1 Features
• 32-bit resolution
• 32.768kHz external crystal clock source with selectable prescaling

– 1.024kHz
– 1Hz

• One compare register
• One period register
• Clear counter on period overflow
• Optional interrupt/ event on overflow and compare match

19.2 Overview
The 32-bit real-time counter (RTC32) is a 32-bit counter that typically runs continuously, includ-
ing in low-power sleep modes, to keep track of time. It can wake up the device from sleep modes
and/or interrupt the device at regular intervals.

The reference clock is typically a 1Hz prescaled output from a high-accuracy crystal of
32.768kHz, a configuration optimized for low power consumption and 1s resolution. The faster
1.024kHz output can be selected if the timer needs 1ms resolution.

The RTC32 will give a compare interrupt and/or event when the counter equals the compare
register value, and a overflow interrupt and/or event when it equals the period register value.

Figure 19-1. 32-bit real-time counter overview.

19.2.1 Clock selection
An external 32.768kHz crystal oscillator must be used as the clock source. Two different fre-
quency outputs are available from this, and the RTC32 clock input can be 1.024kHz or 1Hz.

19.2.2 Clock Domains
The RTC32 is asynchronous, operating from a different clock source, and the counter is inde-
pendent of the main system clock and its derivative clocks, such as the peripheral clock. For
control and count register updates, it will take a number of RTC32 clocks and/or peripheral clock
cycles before an updated register value is available in the register or until a configuration change
has effect on the RTC. This synchronization time is described for each register.

32.768 kHz
Crystal Osc

TOSC1

TOSC2
DIV32 CNT

PER

COMP

=

=

Compare
Match

Overflow

DIV1024

1.024 kHz
227
8331B–AVR–03/12

Atmel AVR XMEGA AU
The Peripheral clock must be more than eight times faster than the RTC32 clock (1.024kHz or
1Hz) when any of the Control or the Count register are accessed (read or written), more than 12
times faster when the Count register is written.

19.2.3 Power Domains
For devices where the RTC32 is located in the VBAT power domain, the battery backup feature
enables the RTC32 to also function with no main VCC available. A dynamic power switch is used
to automatically switch from the VCC domain to the VBAT domain if VCC falls below the operating
voltage level for the device. When the VCC voltage is restored, the power is automatically
switched back to VCC.

19.2.4 Interrupts and Events
The RTC32 can generate both interrupts and events. The RTC32 will give a compare interrupt
request and/or event at the next count after the counter value equals the compare register value.
The RTC32 will give an overflow interrupt request and/or event at the next count after the coun-
ter value equals the period register value. The overflow will also reset the counter value to zero.

Due to the asynchronous clock domains, events will be generated only for every third overflow or
compare match if the period register is zero. If the period register is one, events will be gener-
ated only for every second overflow or compare match. When the period register is equal to or
above two, events will trigger at every overflow or compare match, just as the interrupt request.
228
8331B–AVR–03/12

Atmel AVR XMEGA AU
19.3 Register Descriptions

19.3.1 CTRL – Control register

• Bit 7:1 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

• Bit 0 – ENABLE: Enable
Setting this bit enables the RTC32. The synchronization time between the RTC32 and the sys-
tem clock domains is one half RTC32 clock cycle from writing the register until this has an effect
in the RTC32 clock domain; i.e., until the RTC32 starts.

For the RTC32 to start running, the PER register must also be set to a value different fromzero.

19.3.2 SYNCCTRL – Synchronisation Control/Status register

• Bit 7:5 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

• Bit 4 – SYNCCNT: Enable Synchronization of the CNT Register
Setting this bit will start synchronization of the CNT register from the RTC32 clock to the system
clock domain. The bit is automatically cleared when synchronization is done.

• Bit 3:1 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

• Bit 0 – SYNCBUSY: Synchronization Busy Flag
This flag is set when the CTRL or CNT register is busy synchronizing from the system clock to
the RTC32 clock domain. The CTRL register synchronization is triggered when it is written. The
CNT register is synchronized when the most-significant byte of the register is written.

Bit 7 6 5 4 3 2 1 0

+0x00 – – – – – – – ENABLE CTRL

Read/Write R R R R R R R R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x01 – – – SYNCCNT – – – SYNCBUSY SYNCCTRL

Read/Write R R R R/W R R R R/W

Initial Value 0 0 0 0 0 0 0 0
229
8331B–AVR–03/12

Atmel AVR XMEGA AU
19.3.3 INTCTRL – Interrupt Control register

• Bit 7:4 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

• Bit 3:2 – COMPINTLVL[1:0]: Compare Match Interrupt Level
These bits enable the RTC32 compare match interrupt and select the interrupt level, as
described in ”Interrupts and Programmable Multilevel Interrupt Controller” on page 134. The
enabled interrupt will trigger when COMPIF in the INTFLAGS register is set.

• Bit 1:0 – OVFINTLVL[1:0]: Overflow Interrupt Level
These bits enable the RTC32 overflow interrupt and select the interrupt level, as described in
”Interrupts and Programmable Multilevel Interrupt Controller” on page 134. The enabled interrupt
will trigger when OVFIF in the INTFLAGS register is set.

19.3.4 INTFLAGS – Interrupt Flag register

• Bit 7:2 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

• Bit 1 – COMPIF: Compare Match Interrupt Flag
This flag is set on the next count after a compare match condition occurs. The flag is cleared
automatically when the RTC32 compare match interrupt vector is executed. The flag can also be
cleared by writing a one to its bit location.

• Bit 0 – OVFIF: Overflow Interrupt Flag
This flag is set on the next count after an overflow condition occurs. The flag is cleared automat-
ically when the RTC32 overflow interrupt vector is executed. The flag can also be cleared by
writing a one to its bit location.

19.3.5 CNT0 – Counter register 0
The CNT0, CNT1, CNT2, and CNT3 registers represent the 32-bit value, CNT. CNT counts pos-
itive clock edges on the RTC32 clock.

Bit 7 6 5 4 3 2 1 0

+0x02 – – – – COMPINTLVL[1:0] OCINTLVL[1:0] INTCTRL

Read/Write R R R R R/W R/W R/W R/W

Reset Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x03 – – – – – – COMPIF OVFIF INTFLAGS

Read/Write R R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0
230
8331B–AVR–03/12

Atmel AVR XMEGA AU
Synchronization of a new CNT value to the RTC32 domain is triggered by writing CNT3. The
synchronization time is up to 12 peripheral clock cycles from updating the register until this has
an effect in the RTC32 domain. Write operations to the CNT register will be blocked if the SYN-
CBUSY flag is set.

The synchronization of the CNT register value from the RTC32 domain to the system clock
domain can be done by writing one to the SYNCCNT bit in the SYNCCTRL register. The
updated and synchronized CNT register value is available after eight peripheral clock cycles.

After writing to the high byte of the CNT register, the condition for setting OVFIF and COMPIF,
as well as the overflow and compare match wake-up condition, will be disabled for the following
two RTC32 clock cycles.

19.3.6 CNT1 – Counter register 1

19.3.7 CNT2 – Counter register 2

19.3.8 CNT3 – Counter register 3

19.3.9 PER0 – Period register 0
The PER0, PER1, PER2, and PER3 registers represent the 32-bit value, PER. PER is con-
stantly compared with the counter value (CNT). A compare match will set OVFIF in the
INTFLAGS register, and CNT will be set to zero in the next RTC32 clock cycle. OVFIF will be set
on the next count after match.

The PER register can be written only if the RTC32 is disabled and not currently synchronizing;
i.e., when both ENABLE and SYNCBUSY are zero.

Bit 7 6 5 4 3 2 1 0

+0x04 CNT[7:0] CNT0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x05 CNT[15:8] CNT1

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x06 CNT[23:16] CNT2

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x07 CNT[31:24] CNT3

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Reset Value 0 0 0 0 0 0 0 0
231
8331B–AVR–03/12

Atmel AVR XMEGA AU
After writing a byte in the PER register, the write (HW/SW) condition for setting OVFIF and the
overflow wake-up condition are disabled for the following two RTC32 clock cycles.

19.3.10 PER1 – Period register 1

19.3.11 PER2 – Period register 2

19.3.12 PER3 – Period register 3

19.3.13 COMP0 – Compare register 0
The COMP0, COMP1, COMP2, and COMP3 registers represents the 32-bit value, COMP.
COMP is constantly compared with the counter value (CNT). A compare match will set COMPIF
in the INTFLAGS register, and an interrupt is generated if it is enabled. COMPIF will be set on
next count after a match.

If the COMP value is higher than the PER value, no RTC compare match interrupt requests or
events will be generated.

After writing the high byte of the COMP register, the write condition for setting OVFIF and COM-
PIF, as well as the overflow and compare match wake-up condition, will be disabled for the
following two RTC32 clock cycles.

Bit 7 6 5 4 3 2 1 0

+0x08 PER[7:0] PER0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x09 PER[15:8] PER1

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Reset Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x0A PER[23:16] PER2

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Reset Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x0B PER[31:24] PER3

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
232
8331B–AVR–03/12

Atmel AVR XMEGA AU
19.3.14 COMP1 – Compare register 1

19.3.15 COMP2 – Compare register 2

19.3.16 COMP3 – Compare register 3

Bit 7 6 5 4 3 2 1 0

+0x0C COMP[7:0] COMP0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x0D COMP[15:8] COMP1

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x0E COMP[23:16] COMP2

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x0F COMP[31:24] COMP3

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
233
8331B–AVR–03/12

Atmel AVR XMEGA AU
19.4 Register Summary

19.5 Interrupt Vector Summary

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page

+0x00 CTRL – – – – – – – ENABLE 229

+0x01 SYNCCTRL – – – SYNCCNT – – – SYNCBUSY 229

+0x02 INTCTRL – – – – COMPINTLVL[1:0] OVFINTLVL[1:0] 230

+0x03 INTFLAGS – – – – – – COMPIF OVFIF 230

+0x04 CNT0 CNT[7:0] 230

+0x05 CNT1 CNT[15:8] 231

+0x06 CNT2 CNT[23:16] 231

+0x07 CNT3 CNT[31:24] 230

+0x08 PER0 PER[7:0] 232

+0x09 PER1 PER[15:8] 232

+0x0A PER2 PER[23:16] 232

+0x0B PER3 PER[31:24] 231

+0x0C COMP0 COMP[7:0] 233

+0x0D COMP1 COMP[15:8] 233

+0x0E COMP2 COMP[23:16] 233

+0x0F COMP3 COMP[31:24] 232

Table 19-1. RTC32 interrupt vectors and their word offset addresses.

Offset Source Interrupt Description

0x00 OVF_vect Real-time counter overflow interrupt vector

0x02 COMP_vect Real-time counter compare match interrupt vector
234
8331B–AVR–03/12

Atmel AVR XMEGA AU
20. USB – Universal Serial Bus Interface

20.1 Features
• USB 2.0 full speed (12Mbps) and low speed (1.5Mbps) device compliant interface
• Integrated on-chip USB transceiver, no external components needed
• 16 endpoint addresses with full endpoint flexibility for up to 31 endpoints

– One input endpoint per endpoint address
– One output endpoint per endpoint address

• Endpoint address transfer type selectable to
– Control transfers
– Interrupt transfers
– Bulk transfers
– Isochronous transfers

• Configurable data payload size per endpoint, up to 1023 bytes
• Endpoint configuration and data buffers located in internal SRAM

– Configurable location for endpoint configuration data
– Configurable location for each endpoint's data buffer

• Built-in direct memory access (DMA) to internal SRAM for:
– Endpoint configurations
– Reading and writing endpoint data

• Ping-pong operation for higher throughput and double buffered operation
– Input and output endpoint data buffers used in a single direction
– CPU/DMA controller can update data buffer during transfer

• Multipacket transfer for reduced interrupt load and software intervention
– Data payload exceeding maximum packet size is transferred in one continuous transfer
– No interrupts or software interaction on packet transaction level

• Transaction complete FIFO for workflow management when using multiple endpoints
– Tracks all completed transactions in a first-come, first-served work queue

• Clock selection independent of system clock source and selection
• Minimum 1.5MHz CPU clock required for low speed USB operation
• Minimum 12MHz CPU clock required for full speed operation
• Connection to event system
• On chip debug possibilities during USB transactions

20.2 Overview
The USB module is a USB 2.0 full speed (12Mbps) and low speed (1.5Mbps) device compliant
interface.

The USB supports 16 endpoint addresses. All endpoint addresses have one input and one out-
put endpoint, for a total of 31 configurable endpoints and one control endpoint. Each endpoint
address is fully configurable and can be configured for any of the four transfer types: control,
interrupt, bulk, or isochronous. The data payload size is also selectable, and it supports data
payloads up to 1023 bytes.

No dedicated memory is allocated for or included in the USB module. Internal SRAM is used to
keep the configuration for each endpoint address and the data buffer for each endpoint. The
memory locations used for endpoint configurations and data buffers are fully configurable. The
amount of memory allocated is fully dynamic, according to the number of endpoints in use and
the configuration of these. The USB module has built-in direct memory access (DMA), and will
read/write data from/to the SRAM when a USB transaction takes place.
235
8331B–AVR–03/12

Atmel AVR XMEGA AU
To maximize throughput, an endpoint address can be configured for ping-pong operation. When
done, the input and output endpoints are both used in the same direction. The CPU or DMA con-
troller can then read/write one data buffer while the USB module writes/reads the others, and
vice versa. This gives double buffered communication.

Multipacket transfer enables a data payload exceeding the maximum packet size of an endpoint
to be transferred as multiple packets without software intervention. This reduces the CPU inter-
vention and the interrupts needed for USB transfers.

For low-power operation, the USB module can put the microcontroller into any sleep mode when
the USB bus is idle and a suspend condition is given. Upon bus resumes, the USB module can
wake up the microcontroller from any sleep mode.

Figure 20-1. USB OUT transfer: data packet from host to USB device.

Figure 20-2. USB IN transfer: data packet from USB device to host after request from host.

Internal SRAM

USB
USB Endpoints

Configuration Table

USBEPPTR

USB
Buffers

ENDPOINT 1 DATA

ENDPOINT 2 DATA

ENDPOINT 3 DATA

D
A
T
A
0

D
A
T
A
0

D
A
T
A
0

D
A
T
A
1

D
A
T
A
0

D
A
T
A
1

D
A
T
A
0

D
A
T
A
1

D
A
T
A
0

D
A
T
A
1

D
A
T
A
0

BULK OUT
EPT 2

BULK OUT
EPT 3

BULK OUT
EPT 1

DP
DM

HOST

time

D
A
T
A
0

D
A
T
A
0

D
A
T
A
0

D
A
T
A
1

D
A
T
A
0

D
A
T
A
1

D
A
T
A
0

D
A
T
A
1

D
A
T
A
0

D
A
T
A
1

D
A
T
A
0

EPT 2 EPT 3 EPT 1

DP
DM

HOST

I
N

T
O
K
E
N

I
N

T
O
K
E
N

I
N

T
O
K
E
N

EPT 2 EPT 3 EPT 1

time

Internal SRAM

USB
USB Endpoints

Configuration Table

USBEPPTR

USB
Buffers

ENDPOINT 1 DATA

ENDPOINT 2 DATA

ENDPOINT 3 DATA

CPU
236
8331B–AVR–03/12

Atmel AVR XMEGA AU
20.3 Operation
This section gives an overview of the USB module operation during normal transactions. For
general details on USB and the USB protocol, please refer to http://www.usb.org and the USB
specification documents.

20.3.1 Start of Frame
When a start of frame (SOF) token is detected and storing of the frame numbers is enabled, the
frame number from the token is stored in the frame number register (FRAMENUM) and the start
of frame interrupt flag (SOFIF) in the interrupt flag B clear/set register (INTFLAGSBCLR/SET) is
set. If there was a CRC or bit-stuff error, the frame error (FRAMEERR) flag in FRAMENUM is
set.

20.3.2 SETUP
When a SETUP token is detected, the USB module fetches the endpoint control register (CTRL)
from the addressed output endpoint in the endpoint configuration table. If the endpoint type is
not set to control, the USB module returns to idle and waits for the next token packet.

Figure 20-3. SETUP transaction.

The USB module then fetches the endpoint data pointer register (DATAPTR) and waits for a
DATA0 packet. If a PID error or any other PID than DATA0 is detected, the USB module returns
to idle and waits for the next token packet.

The incoming data are written to the data buffer pointed to by DATAPTR. If a bit-stuff error is
detected in the incoming data, the USB module returns to idle and waits for the next token
packet. If the number of received data bytes exceeds the endpoint's maximum data payload
size, as specified by the data size (SIZE) in the endpoint CTRL register, the remaining received
data bytes are discarded. The packet will still be checked for bit-stuff and CRC errors. Software
must never report a maximum data payload size to the host that is greater than specified in
SIZE. If there was a bit-stuff or CRC error in the packet, the USB module returns to idle and
waits for the next token packet.

If data was successfully received, an ACK handshake is returned to the host, and the number of
received data bytes, excluding the CRC, is written to the endpoint byte counter (CNT). If the
number of received data bytes is the maximum data payload specified by SIZE, no CRC data
are written in the data buffer. If the number of received data bytes is the maximum data payload
specified by SIZE minus one, only the first CRC data byte is written in the data buffer. If the num-
ber of received data bytes is equal or less than the data byte payload specified by SIZE minus
two, the two CRC data bytes are written in the data buffer.

SETUP
TOKEN ADDRESS ADDRESS

MATCH? ENDPOINT LEGAL
ENDPOINT?

EP TYPE
CTRL SET? PID PID OK?

DATA BIT STUFF BIT STUFF
OK? CRC OK? ACK

IDLE

oNoNoNoN

oNoN

READ
CONFIG

UPDATE
STATUS

STORE
DATA

seYseY

YesYesYes Yes

CRC
237
8331B–AVR–03/12

Atmel AVR XMEGA AU
Finally, the setup transaction complete flag (SETUP), data buffer 0 not acknowledge flag
(NACK0), and data toggle flag (TOGGLE) are set, while the remaining flags in the endpoint sta-
tus register (STATUS) are cleared for the addressed input and output endpoints. The setup
transaction complete interrupt flag (SETUPIF) in INTFLAGSBCLR/SET is set. The STALL flag in
the endpoint CTRL register is cleared for the addressed input and output endpoints.

When a SETUP token is detected and the device address of the token packet does not match
that of the endpoint, the packet is discarded, and the USB module returns to idle and waits for
the next token packet.

20.3.3 OUT
When an OUT token is detected, the USB module fetches the endpoint CTRL and STATUS reg-
ister data from the addressed output endpoint in its endpoint configuration table. If the endpoint
is disabled, the USB module returns to idle and waits for the next token packet.

Figure 20-4. OUT transaction.

The USB module then fetches the endpoint DATAPTR register and waits for a DATA0 or DATA1
packet. If a PID error or any other PID than DATA0 or DATA1 is detected, the USB module
returns to idle and waits for the next token packet.

If the STALL flag in the endpoint CTRL register is set, the incoming data are discarded. If the
endpoint is not isochronous, and the bit stuffing and CRC of the received data are OK, a STALL
handshake is returned to the host, and the STALL interrupt flag is set.

For isochronous endpoints, data from both a DATA0 and DATA1 packet will be accepted. For
other endpoint types, the PID is checked against TOGGLE. If they don't match, the incoming
data are discarded and a NAK handshake is returned to the host. If BUSNACK0 is set, the
incoming data are discarded. The overflow flag (OVF) in the endpoint STATUS register and the
overflow interrupt flag (OVFIF) in the INTFLAGSASET/CLR register are set. If the endpoint is
not isochronous, a NAK handshake is returned to the host.

OUT
TOKEN ADDRESS ADDRESS

MATCH? ENDPOINT LEGAL
ENDPOINT?

EP STATUS
ENABLED? PID PID OK?

DATA BIT STUFF BIT STUFF
OK? CRC OK? ACK

IDLE

oNoNoN

oNoN

STALL &
ISO? STALL? STALL

ISO? DATA

No

BUSNACK0
SET? NAK

oNseY

No

No

READ
CONFIG

UPDATE
STATUS

STORE
DATA

STORE
DATA

No

seYseYseYseY

Yes

Yes

Yes

READ
CONFIG

PIDO/1
OK? NAK UPDATE

STATUS
No

Yes

DATA BIT STUFF CRC BIT STUFF
OK? CRC OK?

BUSNACK0
SET?

CRC

oNseY

Yes

Yes

No

Yes

No

Yes
238
8331B–AVR–03/12

Atmel AVR XMEGA AU
The incoming data are written to the data buffer pointed to by DATAPTR. If a bit-stuff error is
detected in the incoming data, the USB module returns to idle and waits for the next token
packet. If the number of received data bytes exceeds the maximum data payload specified by
SIZE, the remaining received data bytes are discarded. The packet will still be checked for bit-
stuff and CRC errors. If there was a bit-stuff or CRC error in the packet, the USB module returns
to idle and waits for the next token packet.

If the endpoint is isochronous and there was a bit-stuff or CRC error in the incoming data, the
number of received data bytes, excluding CRC, is written to the endpoint CNT register. Finally,
CRC and BUSNACK0 in the endpoint and STATUS and CRCIF in INTFLAGSASET/CLR are
set.

If data was successfully received, an ACK handshake is returned to the host if the endpoint is
not isochronous, and the number of received data bytes, excluding CRC, is written to CNT. If the
number of received data bytes is the maximum data payload specified by SIZE no CRC data are
written in the data buffer. If the number of received data bytes is the maximum data payload
specified by SIZE minus one, only the first CRC data byte is written in the data buffer If the num-
ber of received data bytes is equal or less than the data payload specified by SIZE minus two,
the two CRC data bytes are written in the data buffer.

Finally, the transaction complete flag (TRNCOMPL0) and BUSNACK0 are set and TOGGLE is
toggled if the endpoint is not isochronous. The transaction complete interrupt flag (TRNIF) in
INTFLAGSBCLR/SET is set. The endpoint's configuration table address is written to the FIFO if
the transaction complete FIFO mode is enabled.

When an OUT token is detected and the device address of the token packet does not match that
of the endpoint, the packet is discarded and the USB module returns to idle and waits for the
next token packet.

20.3.4 IN
If an IN token is detected the, the USB module fetches the endpoint CTRL and STATUS register
data from the addressed input endpoint in the endpoint configuration table. If the endpoint is dis-
abled, the USB module returns to idle and waits for the next token packet.

If the STALL flag in endpoint CTRL register is set, and the endpoint is not isochronous, a STALL
handshake is returned to the host, the STALL flag in the endpoint STATUS register and the
STALL interrupt flag (STALLIF) in INTFLAGSACLR/SET are set.

If BUSNACK0 is set, OVF in the endpoint STATUS register and OVFIF in the INTFLAGSA-
CLR/SET register are set. If the endpoint is not isochronous, a NAK handshake is returned to
the host.

The data in the data buffer pointed to by the endpoint DATAPTR register are sent to the host in
a DATA0 packet if the endpoint is isochronous; otherwise, a DATA0 or DATA1 packet according
to TOGGLE is sent. When the number of data bytes specified in endpoint CNT is sent, the CRC
is appended and sent to the host. If not, a ZLP handshake is returned to the host.

For isochronous endpoints, BUSNACK0 and TRNCOMPL0 in the endpoint STATUS register are
set. TRNIF is set, and the endpoint's configuration table address is written to the FIFO if the tran-
scation complete FIFO mode is enabled.

For all non-isochronous endpoints, the USB module waits for an ACK handshake from the host.
If an ACK handshake is not received within 16 USB clock cycles, the USB module returns to idle
and waits for the next token packet. If an ACK handshake was successfully received,
239
8331B–AVR–03/12

Atmel AVR XMEGA AU
BUSNACK0 and TRNCOMPL0 are set and TOGGLE is toggled. TRNIF is set and the endpoint's
configuration table address is written to the FIFO if the transcation complete FIFO mode is
enabled.

When an IN token is detected and the device address of the token packet does not match that of
the endpoint, the packet is discarded and the USB module returns to idle and waits for the next
token packet.

Figure 20-5. IN transaction.

20.4 SRAM Memory Mapping
The USB module uses internal SRAM to store the:

• Endpoint configuration table

• USB frame number

• Transaction complete FIFO

The endpoint pointer register (EPPTR) is used to set the SRAM address for the endpoint config-
uration table. The USB frame number (FRAMENUM) and transaction complete FIFO (FIFO)
locations are derived from this. The locations of these areas are selectable inside the internal
SRAM. Figure on page 240 gives the relative memory location of each area.

IN
TOKEN ADDRESS ADDRESS

MATCH? ENDPOINT LEGAL
ENDPOINT?

EP STATUS
ENABLED?

DATA ACKPAYLOAD
OK?

IDLE

oNoNoN

No

STALL &
NO ISO? STALL

NAK

No

READ
CONFIG

READ
DATA

READ
CONFIG

UPDATE
STATUS

Yes

seYseYseY

Yes

BUSNACK0
SET? ISO?

Yes No

ISO? ACK
SET?

NoYes

Yes Yes

No

No

ZLP

CRC
240
8331B–AVR–03/12

Atmel AVR XMEGA AU
Figure 20-6. SRAM memory mapping.

20.5 Clock Generation
The USB module requires a minimum 6MHz clock for USB low speed operation, and a minimum
48MHz clock for USB full speed operation. It can be clocked from internal or external clock
sources by using the internal PLL, or directly from the 32MHz internal oscillator when it is tuned
and calibrated to 48MHz. The CPU and peripherals clocks must run at a minimum of 1.5MHz for
low speed operation, and a minimum of 12MHz for full speed operation.

The USB module clock selection is independent of and separate from the main system clock
selection. Selection and setup are done using the main clock control settings. For details, refer
to ”System Clock and Clock Options” on page 83.

The Figure 20-7 on page 242 shows an overview of the USB module clock selection.

FIFO
EP_ADDRH_MAX

EP_ADDRL_0
EP_ADDRH_0

(MAXEP+1) x 4 Bytes
Active when FIFOEN==1

ENDPOINT
DESCRIPTORS
TABLE

STATUS
CTRL
CNTL
CNTH

DATAPTRL
DATAPTRH
AUXDATAL
AUXDATAH

ENDPOINT
0 OUT

STATUS
CTRL
CNTL
CNTH

DATAPTRL
DATAPTRH
AUXDATAL
AUXDATAH

ENDPOINT
0 IN

STATUS
CTRL
CNTL
CNTH

DATAPTRL
DATAPTRH
AUXDATAL
AUXDATAH

ENDPOINT
MAXEP IN

(MAXEP+1) x 16 Bytes

FRAME
NUMBER

FRAMENUML
FRAMENUMH

2 Bytes
Active when
STFRNUM==1

0x00
0x01
0x02
0x03
0x04
0x05
0x06
0x07

(MAXEP+1)<<4

EPPTR

EPPTR +
(MAXEP+1)*16

SRAM
ADDRESS
241
8331B–AVR–03/12

Atmel AVR XMEGA AU
Figure 20-7. Clock generation configuration.

20.6 Ping-pong Operation
When an endpoint is configured for ping-pong operation, it uses the input and output data buf-
fers to create a single, double-buffered endpoint that can be set to input or output direction. This
provides double-buffered communication, as the CPU or DMA controller can access one of the
buffers, while the other buffer is processing an ongoing transfer. Ping-pong operation is identical
to the IN and OUT transactions described above, unless otherwise noted in this section. Ping-
pong operation is not possible for control endpoints.

When ping-pong operation is enabled for an endpoint, the endpoint in the opposite direction
must be disabled. The data buffer, data pointer, byte counter, and auxiliary data from the
enabled endpoint are used as bank 0, and, correspondingly, bank 1 for the opposite endpoint
direction.

The bank select (BANK) flag in the endpoint STATUS register indicates which data bank will be
used in the nex t t ransac t ion . I t i s upda ted a f te r each t ransac t ion . The
TRNCOMPL0/TRNCOMPL1, underflow/overflow (UDF/OVF), and CRC flags in the STATUS
register are set for either the enabled or the opposite endpoint direction according to the BANK
flag. The data toggle (TOGGLE), data buffer 0/1 not acknowledge (BUSNACK0 and
BUSNACK1), and BANK flags are updated for the enabled endpoint direction only.

USB module
48MHz full speed

6MHz for low speed

USBSRC

USB clock
prescaler

USBPSDIV

PLL

48MHz Internal Oscillator
242
8331B–AVR–03/12

Atmel AVR XMEGA AU
Figure 20-8. Ping-pong operation overview.

20.7 Multipacket Transfers
Multipacket transfer enables a data payload exceeding the maximum data payload size of an
endpoint to be transferred as multiple packets without any software intervention. This reduces
interrupts and software intervention to the higher level USB transfer, and frees up significant
CPU time. Multipacket transfer is identical to the IN and OUT transactions described above,
unless otherwise noted in this section.

The application software provides the size and address of the SRAM buffer to be processed by
the USB module for a specific endpoint, and the USB module will then split the buffer in the
required USB data transfer.

Figure 20-9. Multipacket overview.

20.7.1 For Input Endpoints
The total number of data bytes to be sent is written to CNT, as for normal operation. The auxil-
iary data register (AUXDATA) is used to store the number of bytes that will be sent, and must be
written to zero for a new transfer.

Bank0

Available time for data processing by CPU to avoid NACK

Without Ping-Pong

With Ping-Pong

Bank1

Endpoint
single bank

Endpoint
Double bank

USB data packet

t

t

Transfer Complete Interrupt and data processing

Without multipacket

With multipacket
243
8331B–AVR–03/12

Atmel AVR XMEGA AU
When an IN token is received, the endpoint’s CNT and AUXDATA are fetched. If CNT minus
AUXDATA is less than the endpoint SIZE, endpoint CNT minus endpoint AUXDATA number
bytes are transmitted; otherwise, SIZE number of bytes are transmitted. If endpoint CNT is a
multiple of SIZE and auto zero length packet (AZLP) is enabled, the last packet sent will be zero
length.

If a maximum payload size packet was sent (i.e., not the last transaction), AUXDATA is incre-
mented by SIZE. TOGGLE will be toggled after the transaction has completed if the endpoint is
not isochronous. If a short packet was sent (i.e., the last transaction), AUXDATA is incremented
by the data payload. TOGGLE will be toggled if the endpoint is not isochronous, and BUSNACK,
TRNIF, and TRNCOMPL0 will be set.

20.7.2 For Output Endpoints
The number of data bytes received is stored in the endpoint’s CNT register, as for normal opera-
tion. Since the endpoint’s CNT is updated after each transaction, it must be set to zero when
setting up a new transfer. The total number of bytes to be received must be written to AUX-
DATA. This value must be a multiple of SIZE; otherwise, excess data may be written to SRAM
locations used by other parts of the application.

TOGGLE management is as for non-isochronous packets, and BUSNACK0/BUSNACK1 man-
agement is as for normal operation.

If a maximum payload size packet is received, CNT is incremented by SIZE after the transaction
has completed, and TOGGLE toggles if the endpoint is not isochronous. If the updated endpoint
CNT i s equa l to AUXDATA, then BUSNACK0/BUSNACK1, TRNIF , and
TRNCOMPL0/TRNCOMPL1 will be set.

If a short or oversized packet is received, the endpoint’s CNT register will be incremented by the
data payload after the transaction has completed. TOGGLE will be toggled if the endpoint is not
isochronous, and BUSNACK0/BUSNACK1, TRNIF, and TRNCOMPL0/TRNCOMPL1 will be set.

20.8 Auto Zero Length Packet
Some IN transfer requires a zero length packet to be generated in order to signal end of transfer
to the host. The auto zero length packet (AZLP) function can be enabled to perform this genera-
tion automatically, thus removing the need for application software or CPU intervention to
perform this task.

20.9 Transaction Complete FIFO
The transaction complete FIFO provides a convenient way to keep track of the endpoints that
have completed IN or OUT transactions and need firmware intervention. It creates a first-come,
first-served work queue for the application software.

The FIFO size is (MAXEP[3:0] + 1) × 4 bytes, and grows downward, starting from EPPTR - 1.
This SRAM memory is allocated only when the FIFO is enabled.
244
8331B–AVR–03/12

Atmel AVR XMEGA AU
Figure 20-10. Transfer complete FIFO.

To manage the FIFO, a five-bit write pointer (FIFOWP) and five-bit read pointer (FIFORP) are
used by the USB module and application software, respectively. FIFORP and FIFOWP are one's
complemented, and thus hold negative values. The SRAM location of the data is the sum of
EPPTR and the read or write pointer. The number of items in the FIFO is the difference between
FIFOWP and FIFORP. For the programmer, the FIFORP and FIFOWP values have to be cast to
a signed 8-bit integer, and then the offset into the FIFO from this signed integer must be
deducted.

The transaction complete interrupt flag (TRNIF) in the INFLAGSB[CLR,SET] register is set to
indicate a non-empty FIFO when FIFORP != FIFOWP, cleared when they are equal, and also
set when the FIFO is full.

Each time an endpoint IN or OUT transaction completes successfully, its endpoint configuration
table address is stored in the FIFO at the current write pointer position (i.e., EPPTR + 2 ×
FIFOWP) and FIFOWP is decremented. When the pointer reaches the FIFO size, it wraps to
zero. When application software reads FIFORP, this is decremented in the same way. Reading
the write pointer has no effect. The endpoint configuration table address can then be read
directly from (EPPTR + 2 × FIFORP).

Figure 20-11. USB transaction complete FIFO example.

20.10 Interrupts and Events
The USB module can generate interrupts and events. The module has 10 interrupt sources.
These are split between two interrupt vectors, the transaction complete (TRNCOMPL) interrupt
and the bus event (BUSEVENT) interrupt. An interrupt group is enabled by setting its interrupt
level (INTLVL), while different interrupt sources are enabled individually or in groups.

USB_TC_ FIFO

TC_EP_ ADDRH_0
TC_EP_ ADDRL_0

TC_EP_ ADDRH_ MAX

ENDPOINT DESCRIPTOR TABLE

TC_EP_ ADDRH_1
TC_EP_ ADDRL_1

INTERNAL SRAM

TC_EP_ ADDRH_2
TC_EP_ ADDRH_2

FIFOWP

FIFORP

EPPTR

SRAM
ADDRESS

EPPTR –
4x(MAXEP+1)

Ep X tEpY EpZ

FIFO

X
Y
Z

FIFOWP

FIFORPX
Y
Z

FIFOWP

FIFORP

FIFO

X
Y

FIFOWP

FIFORP

FIFO

X
FIFOWP

FIFORP

FIFO

FIFOWP FIFORP
245
8331B–AVR–03/12

Atmel AVR XMEGA AU
Figure 20-12 on page 246 summarizes the interrupts and event sources for the USB module,
and shows how they are enabled.

Figure 20-12. Interrupts and events scheme summary.

20.10.1 Transaction Complete Interrupt
The transaction complete interrupt is generated per endpoint. When an interrupt occurs, the
associated endpoint number is registered and optionally added to the FIFO. The following two
interrupt sources use the interrupt vector:

SOFIESUSPENDIF

RESUMEIF

RSTIF

CRCIF

UNFIF

OVFIF

STALLIF

BSEVIE

STALLIE

BUSSERRIE

SOFIF

SETUPIE

TRNIF

TRNIE

SETUPIF

Busevent
Interrupt request

Transaction Complete
Interrupt request

Table 20-1. Transaction complete interrupt sources.

Interrupt source Description

Transfer complete (TRNIF) An IN or OUT transaction is completed

Setup complete (SETUPIF) A SETUP transaction is completed
246
8331B–AVR–03/12

Atmel AVR XMEGA AU
20.10.2 Bus Event Interrupt
The bus event (BUSEVENT) interrupt is used for all interrupts that signal various types of USB
line events or error conditions. These interrupts are related to the USB lines, and are generated
for the USB module and per endpoint. The following eight interrupts use the interrupt vector:

20.10.3 Events
The USB module can generate several events, and these are available to the event system,
allowing latency-free signaling to other peripherals or performance analysis of USB operation.

20.11 VBUS Detection
Atmel AVR XMEGA devices can use any general purpose I/O pin to implement a VBUS detec-
tion function, and do not use a dedicated VBUS detect pin.

20.12 On-chip Debug
When a break point is reached during on-chip debug (OCD) sessions, the CPU clock can be
below 12MHz. If this happens, the USB module will behave as follows:

USB OCD break mode disabled: The USB module immediately acknowledges any OCD break
request. The USB module will not be able to follow up on transactions received from the USB
host, and its behaviour from the host point of view is not predictable.

USB OCD break mode enabled: The USB module will immediately acknowledge any OCD break
request only if there are no ongoing USB transactions. If there is an ongoing USB transaction,
the USB module will acknowledge any OCD break request only when the ongoing USB transac-
tion has been completed. The USB module will NACK any further transactions received from the
USB host, whether they are SETUP, IN (ISO, BULK), or OUT (ISO, BULK).

Table 20-2. Bus event interrupt source.

Interrupt source Description

Start of frame (SOFIF) A SOF token has been received

Suspend (SUSPENDIF) The bus has been idle for 3ms

Resume (RESUMEIF)
A non-idle state is detected when the bus is suspended.
The interrupt is asynchronous and can wake the device from all
sleep modes

Reset (RSTIF) A reset condition has been detected on the bus

Isochronous CRC error (CRCIF)
A CRC or bit-stuff error has been detected in an incoming packet
to an isochronous endpoint

Underflow (UNFIF) An endpoint is unable to return data to the host

Overflow (OVFIF) An endpoint is unable to accept data from the host

STALL (STALLIF) A STALL handshake has been returned to the host

Table 20-3. Event sources.

Event source Description

SETUP SETUPIF

Start of Frame SOFIF

CRC error CRCIF

Underflow/overflow UNFIF and OVFIF
247
8331B–AVR–03/12

Atmel AVR XMEGA AU
20.13 Register Description – USB

20.13.1 CTRLA – Control register A

• Bit 7 – ENABLE: USB Enable
Setting this bit enables the USB interface. Clearing this bit disables the USB interface and imme-
diately aborts any ongoing transactions.

• Bit 6 – SPEED: Speed Select
This bit selects between low and full speed operation. By default, this bit is zero, and low speed
operation is selected. Setting this bit enables full speed operation.

• Bit 5 – FIFOEN: USB FIFO Enable
Setting this bit enables the USB transaction complete FIFO, and the FIFO stores the endpoint
configuration table address of each endpoint that generates a transaction complete interrupt.
Clearing this bit disables the FIFO and frees the allocated SRAM memory.

• Bit 4 – STFRNUM: Store Frame Number Enable
Setting this bit enables storing of the last SOF token frame number in the frame number (FRA-
MENUM) register. Clearing this bit disables the function.

• Bit 3:0 – MAXEP[3:0]: Maximum Endpoint Address
These bits select the number of endpoint addresses used by the USB module. Incoming packets
with a higher endpoint number than this address will be discarded. Packets with endpoint
addresses lower than or equal to this address will cause the USB module to look up the
addressed endpoint in the endpoint configuration table.

20.13.2 CTRLB – Control register B

• Bit 7:5 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

Bit 7 6 5 4 3 2 1 0

+0x00 ENABLE SPEED FIFOEN STFRNUM MAXEP[3:0] CTRLA

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x01 – – – PULLRST – RWAKEUP GNACK ATTACH CTRLB

Read/Write R R R R/W R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
248
8331B–AVR–03/12

Atmel AVR XMEGA AU
• Bit 4 – PULLRST: Pull during Reset
Setting this bit enables the pull-up on the USB lines to also be held when the device enters
reset. The bit will be cleared on a power-on reset.

• Bit 3 – Reserved
This bit is unused and reserved for future use. For compatibility with future devices, always write
this bit to zero when this register is written.

• Bit 2 – RWAKEUP: Remote Wake-up
Setting this bit sends an upstream resume on the USB lines if the bus is in the suspend state for
at least 5 ms.

• Bit 1 – GNACK: Global NACK
When this bit is set, the USB module will NACK all incoming transactions. Expect for a SETUP
packet, this prevents the USB module from performing any on-chip SRAM access, giving all
SRAM bandwidth to the CPU and/or DMA controller.

• Bit 0 – ATTACH: Attach
Setting this bit enables the internal D+ or D- pull-up (depending on the USB speed selection),
and attaches the device to the USB lines. Clearing this bit disconnects the device from the USB
lines.

20.13.3 STATUS – Status register

• Bit 7:4 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

• Bit 3 – URESUME: Upstream Resume
This flag is set when an upstream resume is sent.

• Bit 2 – RESUME: Resume
This flag is set when a downstream resume is received.

• Bit 1 – SUSPEND: Bus Suspended
This flag is set when the USB linesare in the suspended state (the bus has been idle for at least
3ms).

• Bit 0 – BUSRST: Bus Reset
This flag is set when a reset condition has been detected (the bus has been driven to SE0 for at
least 2.5µs).

Bit 7 6 5 4 3 2 1 0

+0x02 – – – – URESUME RESUME SUSPEND BUSRST STATUS

Read/Write R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0
249
8331B–AVR–03/12

Atmel AVR XMEGA AU
20.13.4 ADDR – Address register

• Bit 7 – Reserved
This bit is unused and reserved for future use. For compatibility with future devices, always write
this bit to zero when this register is written.

• Bit 6:0 – ADDR[6:0]: Device Address
These bits contain the USB address the device will respond to.

20.13.5 FIFOWP – FIFO Write Pointer register

• Bit 7:5 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

• Bit 4:0 – FIFOWP[4:0]: FIFO Write Pointer
These bits contain the transaction complete FIFO write pointer. This register must be read only
by the CPU or DMA controller. Writing this register will flush the FIFO write and read pointers.

20.13.6 FIFORP – FIFO Read Pointer register

• Bit 7:5 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

• Bit 4:0 – FIFORP[4:0]: FIFO Read Pointer
These bits contain the transaction complete FIFO read pointer. This register must only be read
by the CPU or DMA controller. Writing this register will flush the FIFO write and read pointer.

Bit 7 6 5 4 3 2 1 0

+0x03 – ADDR[6:0] ADDR

Read/Write R R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x04 – –- –- FIFOWP[4:0] FIFOWP

Read/Write R R R R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x05 – – – FIFORP[4:0] FIFORP

Read/Write R R R R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
250
8331B–AVR–03/12

Atmel AVR XMEGA AU
20.13.7 EPPTRL – Endpoint Configuration Table Pointer Low Byte
The EPPTRL and EPPTRH registers represent the 16-bit value, EPPTR, that contains the
address to the endpoint configuration table. The pointer to the endpoint configuration table must
be aligned to a 16-bit word; i.e., EPPTR[0] must be zero. Only the number of bits required to
address the available internal SRAM memory is implemented for each device. Unused bits will
always be read as zero.

• Bit 7:0 – EPPTR[7:0]: Endpoint Configuration Table Pointer
This register contains the eight lsbs of the endpoint configuration table pointer (EPPTR).

20.13.8 EPPTRH – Endpoint Configuration Table Pointer High byte

• Bit 7:0 – EPPTR[15:8]: Endpoint Configuration Table Pointer
This register contains the eight msbs of the endpoint configuration table pointer (EPPTR).

20.13.9 INTCTRLA – Interrupt Control register A

• Bit 7 – SOFIE: Start Of Frame Interrupt Enable
Setting this bit enables the start of frame (SOF) interrupt for the conditions that set the start of
frame interrupt flag (SOFIF) in the INTFLAGSACLR/ INTFLAGSASET register. The INTLVL bits
must be nonzero for the interrupts to be generated.

• Bit 6 – BUSEVIE: Bus Event Interrupt Enable
Setting this bit will enable the interrupt for the following three bus events:

1. Suspend: An interrupt will be generated for the conditions that set the suspend interrupt
flag (SUSPENDIF) in the INTFLAGSACLR/SET register.

2. Resume: An interrupt will be generated for the conditions that set the resume interrupt
flag (RESUMEIF) in the INTFLAGSACLR/SET register.

3. Reset: An interrupt will be generated for the conditions that set the reset interrupt flag
(RESETIF) in the INTFLAGSACLR/SET register.

The INTLVL bits must be nonzero for the interrupts to be generated.

Bit 7 6 5 4 3 2 1 0

+0x06 EPPTR[7:0] EPPTRL

Read/Write R/W R/W R/W R/W R/W R/W R/W R

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x07 EPPTR[15:8] EPPTRH

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x06 SOFIE BUSEVIE BUSERRIE STALLIE – – INTLVL[1:0] INTCTRLA

Read/Write R/W R/W R/W R/W R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0
251
8331B–AVR–03/12

Atmel AVR XMEGA AU
• Bit 5 – BUSERRIE: Bus Error Interrupt Enable
Setting this bit will enable the interrupt for the following three bus error events:

1. Isochronous CRC Error: An interrupt will be generated for the conditions that set the
CRC interrupt flag (CRCIF) in the INTFLAGSACLR/SET register during isochronous
transfers.

2. Underflow: An interrupt will be generated for the conditions that set the undeflow inter-
rupt flag (UNFIF) in the INTFLAGSACLR/SET register.

3. Overflow: An interrupt will be generated for the conditions that set the overflow interrupt
flag (OVFIF) in the INTFLAGSACLR/SET register.

The INTLVL bits must be nonzero for the interrupts to be generated.

• Bit 4 – STALLIE: STALL Interrupt Enable
Setting this bit enables the STALL interrupt for the conditions that set the stall interrupt flag
(STALLIF) in the INTFLAGSACLR/SET register. The INTLVL bits must be nonzero for the inter-
rupts to be generated.

• Bit 3:2 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

• Bit 1:0 – INTLVL[1:0]: Interrupt Level
These bits enable the USB interrupts and select the interrupt level, as described in ”Interrupts
and Programmable Multilevel Interrupt Controller” on page 134. In addition, each USB interrupt
source must be separately enabled.

20.13.10 INTCTRLB – Interrupt Control register B

• Bit 7:2 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

• Bit 1 – TRNIE: Transaction Complete Interrupt Enable
Setting this bit enables the transaction complete interrupt for IN and OUT transactions. The
INTLVL bits must be nonzero for interrupts to be generated.

• Bit 0 – SETUPIE: SETUP Transaction Complete Interrupt Enable
Setting this bit enables the SETUP Transaction Complete Interrupt for SETUP transactions. The
INTLVL bits must be non-zero for the interrupts to be generated.

20.13.11 INTFLAGSACLR/ INTFLAGSASET – Clear/ Set Interrupt Flag register A
This register is mapped into two I/O memory locations, one for clearing (INTFLAGSACLR) and
one for setting (INTFLAGSASET) the flags. The individual flags can be set by writing a one to
their bit locations in INFLAGSASET, and cleared by writing a one to their bit locations in INT--

Bit 7 6 5 4 3 2 1 0

+0x07 – – – – – – TRNIE SETUPIE INTCTRLB

Read/Write R R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0
252
8331B–AVR–03/12

Atmel AVR XMEGA AU
FLAGSACLR. Both memory locations will provide the same result when read, and writing zero to
any bit location has no effect.

• Bit 7 – SOFIF: Start Of Frame Interrupt Flag
This flag is set when a start of frame packet has been received.

• Bit 6 – SUSPENDIF: Suspend Interrupt Flag
This flag is set when the bus has been idle for 3ms.

• Bit 5 – RESUMEIF: Resume Interrupt Flag
This flag is set when a non-idle state has been detected on the bus while the USB module is in
the suspend state. This interrupt is asynchronous, and is able to wake the CPU from sleep
modes where the system clock is stopped, such as power-down and power-save sleep modes.

• Bit 4 – RSTIF: Reset Interrupt Flag
This flag is set when a reset condition has been detected on the bus.

• Bit 3 – CRCIF: Isochronous CRC Error Interrupt Flag
This flag is set when a CRC error has been detected in an incoming data packet to an isochro-
nous endpoint.

• Bit 2 – UNFIF: Underflow Interrupt Flag
This flag is set when the addressed endpoint in an IN transaction does not have data to send to
the host.

• Bit 1 – OVFIF: Overflow Interrupt Flag
This flag is set when the addressed endpoint in an OUT transaction is not ready to accept data
from the host.

• Bit 0 – STALLIF: STALL Interrupt Flag
This flag is set when the USB module has responded with a STALL handshake to either an IN or
an OUT transaction.

20.13.12 INTFLAGSBCLR/INTFLAGSBSET – Clear/Set Interrupt Flag eegister B
This register is mapped into two I/O memory locations, one for clearing (INTFLAGSBCLR) and
one for setting (INTFLAGSBSET) the flags. The individual flags can be set by writing a one to
their bit locations in INFLAGSBSET, and cleared by writing a one to their bit locations in INT-
FLAGSBCLR. Both memory locations will provide the same result when read, and writing zero to
any bit location has no effect.

Bit 7 6 5 4 3 2 1 0

+0x0A/ +0x0B SOFIF SUSPENDIF RESUMEIF RESETIF CRCIF UNFIF OVFIF STALLIF

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x0C/ +0x0D – – – – – –- TRNIF SETUPIF

Read/Write R R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0
253
8331B–AVR–03/12

Atmel AVR XMEGA AU
• Bit 7:2 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

• Bit 1 – TRNIF: Transaction Complete Interrupt Flag
This flag is when there is a pending packet interrupt in the FIFO.

• Bit 0 – SETUPIF: SETUP Transaction Complete Interrupt Flag
This flag is set when a SETUP transaction has completed successfully.

20.13.13 CALL – Calibration Low
CALL and CALH hold the 16-bit value, CAL. The USB PADs (D- and D+) are calibrated during
production to enable operation without requiring external components on the USB lines. The cal-
ibration value is stored in the signature row of the device, and must be read from there and
written to the CAL registers from software.

• Bit 7:0 – CAL[7:0]: PAD Calibration Low
This byte holds the eight lsbs of CAL.

20.13.14 CALH – Calibration High

• Bit 7:0 – CAL[15:8]: PAD Calibration High
This byte holds the eight msbs of CAL.

Bit 7 6 5 4 3 2 1 0

++0x3A CAL[7:0] CALL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x3B CAL[15:8] CALH

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
254
8331B–AVR–03/12

Atmel AVR XMEGA AU
20.14 Register Description – USB Endpoint
Each of the 16 endpoint addresses have one input and one output endpoint. Each endpoint has
eight bytes of configuration/status data located in internal SRAM.

The address to the first configuration byte is (EPPTR[15:0] + 16 × endpoint address) for output
endpoints and (EPPTR[15:0] + 16 × endpoint address + 8) for input endpoints.

Some bit locations have different functions, depending on endpoint configuration type or direc-
tion, and this is reflected by using two different names for the bit locations.

20.14.1 STATUS – Status register

Note: 1. For isochronous endpoints.

• Bit 7 – STALL: STALL Flag
This flag is set when an IN or OUT transaction has been responded to with a STALL handshake.
This flag is cleared by writing a one to its bit location.

• Bit 7 – CRC: CRC Error Flag
This flag is set for isochronous output endpoints when a CRC error has been detected in an
incoming data packet. This flag is cleared by writing a one to its bit location.

• Bit 6 – UNF/OVF: Underflow/Overflow Flag
UNF: For input endpoints, the UNF flag is set when an input endpoint is not ready to send

data to the host in response of an IN token.

OVF: For output endpoints, the OVF flag is set when an output endpoint is not ready to
accept data from the host following an OUT token.

• Bit 5 – TRNCOMPL0: Transaction Complete Flag
This flag is set when an IN or OUT transaction has completed successfully. This flag is cleared
by writing a one to its bit location.

• Bit 4 – SETUP: SETUP Transaction Complete Flag
This flag is set when a SETUP, IN, or OUT transaction has completed successfully. This flag is
cleared by writing a one to its bit location.

• Bit 4 – TRNCOMPL1: Transaction Complete Flag
This flag is set when a SETUP, IN, or OUT transaction has completed successfully. This flag is
cleared by writing a one to its bit location.

Bit 7 6 5 4 3 2 1 0

+0x00
STALL

UNF/ OVF TRNCOMPL0
SETUP

BANK BUSNACK1 BUSNACK0 TOGGLE STATUS
CRC(1) TRNCOMPL1

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
255
8331B–AVR–03/12

Atmel AVR XMEGA AU
• Bit 3 – BANK: Bank Select Flag
When ping-pong mode is enabled, this bit indicates which bank will be used for the next transac-
tion. BANK is toggled each time a transaction has completed successfully. This bit is not sed
when ping-pong is disabled. This flag is cleared by writing a one to its bit location.

• Bit 2 – BUSNACK1 : Data Buffer 1 Not Acknowledge Flag
When this flag is set, the USB module will discard incoming data to data buffer 1 in an OUT
transaction, and will not return any data from data buffer 1 in an IN transaction. For control, bulk,
and interrupt endpoints, a NAK handshake is returned. This flag is cleared by writing a one to its
bit location.

• Bit 1 – BUSNACK0 : Data Buffer 0 Not Acknowledge Flag
When this flag is set, the USB module will discard incoming data to data buffer 0 in an OUT
transaction, and will not return any data from data buffer 0 in an IN transaction. For control, bulk,
and interrupt endpoints, a NAK handshake is returned. This flag is cleared by writing a one to its
bit location.

• Bit 0 – TOGGLE : Data Toggle Flag
This indicates if a DATA0 or DATA1 PID is expected in the next data packet for an output end-
point, and if a DATA0 or DATA1 PID will be sent in the next transaction for an input endpoint.
This bit has no effect for isochronous endpoints, where both DATA0 and DATA1 PIDs are
accepted for output endpoint, and only DATA0 PIDs are sent for input endpoints.

20.14.2 CTRL – Control

Note: 1. For isochronous endpoints.

• Bit 7:6 – TYPE[1:0]: Endpoint Type
These bits are used to enable and select the endpoint type. If the endpoint is disabled, the
remaining seven endpoint configuration bytes are never read or written by the USB module, and
their SRAM locations are free to use for other application data.

• Bit 5 – MULTIPKT: Multipacket Transfer Enable
Setting this bit enables multipacket transfers. Multipacket transfer enables a data payload
exceeding the maximum packet size of an endpoint to be transferred as multiple packets without

Bit 7 6 5 4 3 2 1 0

+0x01 TYPE[1:0] MULTIPKT PINGPONG INTDSBL
STALL SIZE[1:0]

CTRL
SIZE[2:0](1)

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 20-4. Endpoint type.

TYPE[1:0] Group Configuration Description

00 DISABLE Endpoint enabled

01 CONTROL Control

10 BULK Bulk/interrupt

11 ISOCHRONOUS Isochronous
256
8331B–AVR–03/12

Atmel AVR XMEGA AU
interrupts or software intervention. See ”Multipacket Transfers” on page 243 for details on multi-
packet transfers.

• Bit 4 – PINGPONG: Ping-pong Enable
Setting this bit enables ping-pong operation. Ping-pong operation enables both endpoints (IN
and OUT) with same address to be used in the same direction to allow double buffering and
maximize throughput. The endpoint in the opposite direction must be disabled when ping-pong
operation is enabled. Ping-pong operation is not possible for control endpoints. See ”Ping-pong
Operation” on page 242 for details.

• Bit 3 – INTDSBL: Interrupt Disable
Setting this bit disables all enabled interrupts from the endpoint. Hence, only the interrupt flags
in the STATUS register are updated when interrupt conditions occur. The FIFO does not store
this endpoint configuration table address upon transaction complete for the endpoint when inter-
rupts are disabled for an endpoint. Clearing this bit enables all previously enables interrupts
again.

• Bit 2 – STALL: Endpoint STALL
This bit controls the STALL behavior if the endpoint.

• Bit 1:0 – BUFSIZE[1:0]: Data Size
These bits configure the maximum data payload size for the endpoint. Incoming data bytes
exceeding the maximum data payload size are discarded.

• Bit 2:0 – BUFSIZE[2:0]: Data Size
These bits configure the maximum data payload size for the endpoint when configured for iso-
chronous operation.

Note: 1. Setting only available for isochronous endpoints.

20.14.3 CNTL – Counter Low
The CNTL and CNTH registers represent the 10-bit value, CNT, that contains the number of
bytes received in the last OUT or SETUP transaction for an OUT endpoint, or the number of
bytes to be sent in the next IN transaction for an IN endpoint.

Table 20-5. BUFSIZE configuration.

BUFSIZE[2:0] Group Configuration Description

000 8 8-byte buffer size

001 16 16-byte buffer size

010 32 32-byte buffer size

011 64 64-byte buffer size

100(1) 128 128-byte buffer size

101(1) 256 256-byte buffer size

110(1) 512 512-byte buffer size

111(1) 1023 1023-bytesbuffer size
257
8331B–AVR–03/12

Atmel AVR XMEGA AU

• Bit 7:0 – CNT[7:0]: Endpoint Byte Counter
This byte contains the eight lsbs of the USB endpoint counter (CNT).

20.14.4 CNTH – Counter High

• Bit 6 – AZLP: Automatic Zero Length Packet
When this bit is set, the USB module will manage the ZLP handshake by hardware. This
applies to IN endpoints only. When this bit is zero, the ZLP handshake must be managed by
firmware.

• Bit 6:2 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

• Bit 1:0 – CNT[9:8]: Endpoint Byte Counter
These bits contain the two msbs of the USB endpoint counter (CNT).

20.14.5 DATAPTRL – Data Pointer Low
The DATAPTRL and DATAPTRH registers represent the 16-bit value, DATAPTR, that contains
the SRAM address to the endpoint data buffer.

• Bit 7:0 – DATAPTR[7:0]: Endpoint Dta Pointer Low
This byte contains the eight lsbs of the endpoint data pointer (DATAPTR).

20.14.6 DATAPTRH – Data Pointer High

Bit 7 6 5 4 3 2 1 0

+0x02 CNT[7:0] CNTL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value X X X X X X X X

Bit 7 6 5 4 3 2 1 0

+0x03 AZLP – – – – – CNT[9:8] CNTH

Read/Write R/W R R R R R R/W R/W

Initial Value X X X X X X X X

Bit 7 6 5 4 3 2 1 0

+0x04 DATAPTR[7:0] DATAPTRL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value X X X X X X X X

Bit 7 6 5 4 3 2 1 0

+0x05 DATAPTR[15:8] DATAPTRH

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value X X X X X X X X
258
8331B–AVR–03/12

Atmel AVR XMEGA AU
• Bit 15:0 - DPTR[15:8]: Endpoint Data Pointer High
This byte contains the eight msbs of the endpoint data pointer (DATAPTR).

20.14.7 AUXDATAL – Auxiliary Data Low
The AUXDATAL and AUXDATAH registers represent the 16-bit value, AUXDATA, that is used
for multipacket transfers.

For IN endpoints, AUXDATA holds the total number of bytes sent. AUXDATA should be written
to zero when setting up a new transfer. For OUT endpoints, AUXDATA holds the total data size
for the complete transfer. This value must be a multiple of the maximum packet size, except for
ISO 1023-byte endpoints.

See ”Multipacket Transfers” on page 243 for more details on setting up and using multipacket
transfers.

• Bit 7:0 – AUXDATA[7:0]: Auxiliary Data Low
This byte contains the eight lsbs of the auxiliary data (AUXDATA). When multipacket transfer is
not used, this SRAM location is free to use for other application data.

20.14.8 AUXDATAH – Auxiliary Data High

• Bit 7:0 – AUXDATA[15:8]: Auxiliary Data High
This byte contains the eight msbs of the auxiliary data (AUXDATA). When multipacket transfer is
not used, this SRAM location is free to use for other application data.

Bit 7 6 5 4 3 2 1 0

+0x06 AUXDATA[7:0] AUXDATAL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value X X X X X X X X

Bit 7 6 5 4 3 2 1 0

+0x07 AUXDATA[15:8] AUXDATAH

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value X X X X X X X X
259
8331B–AVR–03/12

Atmel AVR XMEGA AU
20.15 Register Description – Frame

20.15.1 FRAMENUML – Frame Number Low
The FRAMENUML and FRAMENUMH registers represent the 11-bit value, FRAMENUM, that
holds the frame number from the most recently received start of frame packet.

• Bit 7:0 – FRAMENUM[7:0]: Frame Number
This byte contains the eight lsb sof the frame number (FRAMENUM).

20.15.2 FRAMENUMH – Frame Number High

• Bit 7 – FRAMEERR: Frame Error
This flag is set if a CRC or bit-stuffing error was detected in the most recently received start of
frame packet.

• Bit 6:3 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

• Bit 2:0 – FRAMENUM[10:8]: Frame Number
This byte contains the three msbs of the frame number (FRAMENUM).

Bit 7 6 5 4 3 2 1 0

+0x00 FRAMENUM[7:0] FRAMENUML

Read/Write R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x01 FRAMEERR – – – – FRAMENUM[10:8] FRAMENUMH

Read/Write R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0
260
8331B–AVR–03/12

Atmel AVR XMEGA AU
20.16 Register Summary – USB Module

20.17 Register Summary – USB Endpoint
The address to the first configuration byte is (EPPTR[15:0] + 16 × endpoint address) for OUT
endpoints and (EPPTR[15:0] + 16 × endpoint address + 8) for IN endpoints.

20.18 Register Summary – Frame
The address to the frame configuration byte is (MAXEP + 1) << 4. For instance with MAXEP = 3,
the first address would be located at offset address 0x40.

20.19 USB Interrupt Vector Summary

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page
+0x00 CTRLA ENABLE SPEED FIFOEN STFRNUM MAXEP[3:0] 248

+0x01 CTRLB – – – PULLRST – RWAKEUP GNACK ATTACH 248

+0x02 STATUS – – – – UPRESUME RESUME SUSPEND BUSRST 249

+0x03 ADDR – ADDR[6:0] 250

+0x04 FIFOWP – – – FIFOWP[4:0] 250

+0x05 FIFORP – – – FIFORP[4:0] 250

+0x06 EPPTRL EPPTR[7:0] 251

+0x07 EPPTRH EPPTR[15:8] 251

+0x08 INTCTRLA SOFIE BUSEVIE BUSERRIE STALLIE – – INTLVL[1:0] 251

+0x09 INTCTRLB – – – – – – TRNIE SETUPIE 252

+0x0A INFLAGSACLR SOFIF SUSPENDIF RESUMEIF RSTIF CRCIF UNFIF OVFIF STALLIF 252

+0x0B INFLAGSASET SOFIF SUSPENDIF RESUMEIF RSTIF CRCIF UNFIF OVFIF STALLIF 252

+0x0C INFLAGSBCLR – – – – – – TRNIF SETUPIF 253

+0x0D INFLAGSBSET – – – – – – TRNIF SETUPIF 253

+0x0E Reserved – – – – – – – –

+0x0F Reserved – – – – – – – –

+0x10-0X39 Reserved – – – – – – – –

+0x3A CALL CAL[7:0] 254

+0x3B CALH CAL[15:8] 254

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page
+0x00 STATUS STALL OVF/UNF TRNCOMPL0 SETUP BANK BUSNACK1 BUSNACK0 TOGGLE 255

CRC TRNCOMPL1 Isochromous

+0x01 CTRL TYPE[1:0] MULTIPKT PINGPONG INTDSBL STALL BUFSIZE[1:0] 256

BUFSIZE[2:0] Isochromous

+0x02 CNTL CNT[7:0] 257

+0x03 CNTH AZLP – – – – – CNT[9:8] 258

+0x04 DATAPTRL DATAPTR[7:0] 258

+0x05 DATAPTRH DATAPTR[15:8] 258

+0x06 AUXDATAL AUXDATA[7:0] 259

+0x07 AUXDATAH AUXDATA[15:8] 259

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page
+0x00 FRAMENUML FRAMENUM[7:0] 260

+0x01 FRAMENUMH FRAMEERR – – – – FRAMENUM[10:8] 260

Table 20-6. USB interrupt vectors and their word offset addresses.

Offset Source Interrupt Description

0x00 BUSEVENT_vect SOF, suspend, resume, bus reset, CRC, underflow, overflow, and stall error interrupts

0x02 TRNCOMPL_vect Transaction complete interrupt
261
8331B–AVR–03/12

Atmel AVR XMEGA AU
21. TWI – Two-Wire Interface

21.1 Features
• Bidirectional, two-wire communication interface

– Phillips I2C compatible
– System Management Bus (SMBus) compatible

• Bus master and slave operation supported
– Slave operation
– Single bus master operation
– Bus master in multi-master bus environment
– Multi-master arbitration

• Flexible slave address match functions
– 7-bit and general call address recognition in hardware
– 10-bit addressing supported
– Address mask register for dual address match or address range masking
– Optional software address recognition for unlimited number of addresses

• Slave can operate in all sleep modes, including power-down
• Slave address match can wake device from all sleep modes
• 100kHz and 400kHz bus frequency support
• Slew-rate limited output drivers
• Input filter for bus noise and spike suppression
• Support arbitration between start/repeated start and data bit (SMBus)
• Slave arbitration allows support for address resolve protocol (ARP) (SMBus)

21.2 Overview
The two-wire interface (TWI) is a bidirectional, two-wire communication interface. It is I2C and
System Management Bus (SMBus) compatible. The only external hardware needed to imple-
ment the bus is one pull-up resistor on each bus line.

A device connected to the bus must act as a master or a slave. The master initiates a data trans-
action by addressing a slave on the bus and telling whether it wants to transmit or receive data.
One bus can have many slaves and one or several masters that can take control of the bus. An
arbitration process handles priority if more than one master tries to transmit data at the same
time. Mechanisms for resolving bus contention are inherent in the protocol.

The TWI module supports master and slave functionality. The master and slave functionality are
separated from each other, and can be enabled and configured separately. The master module
supports multi-master bus operation and arbitration. It contains the baud rate generator. Both
100kHz and 400kHz bus frequency is supported. Quick command and smart mode can be
enabled to auto-trigger operations and reduce software complexity.

The slave module implements 7-bit address match and general address call recognition in hard-
ware. 10-bit addressing is also supported. A dedicated address mask register can act as a
second address match register or as a register for address range masking. The slave continues
to operate in all sleep modes, including power-down mode. This enables the slave to wake up
the device from all sleep modes on TWI address match. It is possible to disable the address
matching to let this be handled in software instead.

The TWI module will detect START and STOP conditions, bus collisions, and bus errors. Arbitra-
tion lost, errors, collision, and clock hold on the bus are also detected and indicated in separate
status flags available in both master and slave modes.

It is possible to disable the TWI drivers in the device, and enable a four-wire digital interface for
connecting to an external TWI bus driver. This can be used for applications where the device
operates from a different VCC voltage than used by the TWI bus.
262
8331B–AVR–03/12

Atmel AVR XMEGA AU
21.3 General TWI Bus Concepts
The TWI provides a simple, bidirectional, two-wire communication bus consisting of a serial
clock line (SCL) and a serial data line (SDA). The two lines are open-collector lines (wired-AND),
and pull-up resistors (Rp) are the only external components needed to drive the bus. The pull-up
resistors provide a high level on the lines when none of the connected devices are driving the
bus

The TWI bus is a simple and efficient method of interconnecting multiple devices on a serial bus.
A device connected to the bus can be a master or slave, where the master controls the bus and
all communication.

Figure 21-1 on page 263 illustrates the TWI bus topology.

Figure 21-1. TWI bus topology.

A unique address is assigned to all slave devices connected to the bus, and the master will use
this to address a slave and initiate a data transaction.

Several masters can be connected to the same bus, called a multi-master environment. An arbi-
tration mechanism is provided for resolving bus ownership among masters, since only one
master device may own the bus at any given time.

A device can contain both master and slave logic, and can emulate multiple slave devices by
responding to more than one address.

A master indicates the start of a transaction by issuing a START condition (S) on the bus. An
address packet with a slave address (ADDRESS) and an indication whether the master wishes
to read or write data (R/W) are then sent. After all data packets (DATA) are transferred, the mas-
ter issues a STOP condition (P) on the bus to end the transaction. The receiver must
acknowledge (A) or not-acknowledge (A) each byte received.

Figure 21-2 on page 264 shows a TWI transaction.

TWI
DEVICE #1

RP RP

RS RS

SDA

SCL

VCC

TWI
DEVICE #2

RS RS

TWI
DEVICE #N

RS RS

Note: RS is optional
263
8331B–AVR–03/12

Atmel AVR XMEGA AU
Figure 21-2. Basic TWI transaction diagram topology for a 7-bit address bus .

The master provides the clock signal for the transaction, but a device connected to the bus is
allowed to stretch the low-level period of the clock to decrease the clock speed.

21.3.1 Electrical Characteristics
The TWI module in XMEGA devices follows the electrical specifications and timing of I2C bus
and SMBus. These specifications are not 100% compliant, and so to ensure correct behavior,
the inactive bus timeout period should be set in TWI master mode. Refer to ”TWI Master Opera-
tion” on page 269 for more details.

21.3.2 START and STOP Conditions
Two unique bus conditions are used for marking the beginning (START) and end (STOP) of a
transaction. The master issues a START condition (S) by indicating a high-to-low transition on
the SDA line while the SCL line is kept high. The master completes the transaction by issuing a
STOP condition (P), indicated by a low-to-high transition on the SDA line while SCL line is kept
high.

Figure 21-3. START and STOP conditions.

Multiple START conditions can be issued during a single transaction. A START condition that is
not directly following a STOP condition is called a repeated START condition (Sr).

PS ADDRESS

6 ... 0

R/W ACK ACK

7 ... 0

DATA ACK/NACK

7 ... 0

DATA

SDA

SCL

S A A/AR/WADDRESS DATA PA DATA

Address Packet Data Packet #0

Transaction

Data Packet #1

Direction

The slave provides data on the bus

The master provides data on the bus

The master or slave can provide data on the bus

SDA

SCL

START
Condition

STOP
Condition

S P
264
8331B–AVR–03/12

Atmel AVR XMEGA AU
21.3.3 Bit Transfer
As illustrated by Figure 21-4, a bit transferred on the SDA line must be stable for the entire high
period of the SCL line. Consequently the SDA value can only be changed during the low period
of the clock. This is ensured in hardware by the TWI module.

Figure 21-4. Data validity.

Combining bit transfers results in the formation of address and data packets. These packets
consist of eight data bits (one byte) with the most-significant bit transferred first, plus a single-bit
not-acknowledge (NACK) or acknowledge (ACK) response. The addressed device signals ACK
by pulling the SCL line low during the ninth clock cycle, and signals NACK by leaving the line
SCL high.

21.3.4 Address Packet
After the START condition, a 7-bit address followed by a read/write (R/W) bit is sent. This is
always transmitted by the master. A slave recognizing its address will ACK the address by pull-
ing the data line low for the next SCL cycle, while all other slaves should keep the TWI lines
released and wait for the next START and address. The address, R/W bit, and acknowledge bit
combined is the address packet. Only one address packet for each START condition is allowed,
also when 10-bit addressing is used.

The R/W bit specifies the direction of the transaction. If the R/W bit is low, it indicates a master
write transaction, and the master will transmit its data after the slave has acknowledged its
address. If the R/W bit is high, it indicates a master read transaction, and the slave will transmit
its data after acknowledging its address.

21.3.5 Data Packet
An address packet is followed by one or more data packets. All data packets are nine bits long,
consisting of one data byte and an acknowledge bit. The direction bit in the previous address
packet determines the direction in which the data are transferred.

21.3.6 Transaction
A transaction is the complete transfer from a START to a STOP condition, including any
repeated START conditions in between. The TWI standard defines three fundamental transac-
tion modes: Master write, master read, and a combined transaction.

Figure 21-5 on page 266 illustrates the master write transaction. The master initiates the trans-
action by issuing a START condition (S) followed by an address packet with the direction bit set
to zero (ADDRESS+W).

SDA

SCL

DATA
Valid

Change
Allowed
265
8331B–AVR–03/12

Atmel AVR XMEGA AU
Figure 21-5. Master write transaction.

Assuming the slave acknowledges the address, the master can start transmitting data (DATA)
and the slave will ACK or NACK (A/A) each byte. If no data packets are to be transmitted, the
master terminates the transaction by issuing a STOP condition (P) directly after the address
packet. There are no limitations to the number of data packets that can be transferred. If the
slave signals a NACK to the data, the master must assume that the slave cannot receive any
more data and terminate the transaction.

Figure 21-6 on page 266 illustrates the master read transaction. The master initiates the trans-
action by issuing a START condition followed by an address packet with the direction bit set to
one (ADDRESS+R). The addressed slave must acknowledge the address for the master to be
allowed to continue the transaction.

Figure 21-6. Master read transaction.

Assuming the slave acknowledges the address, the master can start receiving data from the
slave. There are no limitations to the number of data packets that can be transferred. The slave
transmits the data while the master signals ACK or NACK after each data byte. The master ter-
minates the transfer with a NACK before issuing a STOP condition.

Figure 21-7 illustrates a combined transaction. A combined transaction consists of several read
and write transactions separated by repeated START conditions (Sr).

Figure 21-7. Combined Transaction.

21.3.7 Clock and Clock Stretching
All devices connected to the bus are allowed to stretch the low period of the clock to slow down
the overall clock frequency or to insert wait states while processing data. A device that needs to
stretch the clock can do this by holding/forcing the SCL line low after it detects a low level on the
line.

S A A A/A PWADDRESS DATA DATA

Address Packet Data Packet
Transaction

N data packets

S R A A AADDRESS DATA DATA P

Transaction
Address Packet Data Packet

N data packets

S A SrA/AR/W DATA A/A PADDRESS DATA R/WADDRESS

Transaction
Address Packet #1 N Data Packets M Data PacketsAddress Packet #2

Direction Direction

A

266
8331B–AVR–03/12

Atmel AVR XMEGA AU
Three types of clock stretching can be defined, as shown in Figure 21-8.

Figure 21-8. Clock stretching(1).

Note: 1. Clock stretching is not supported by all I2C slaves and masters.

If a slave device is in sleep mode and a START condition is detected, the clock stretching nor-
mally works during the wake-up period. For AVR XMEGA devices, the clock stretching will be
either directly before or after the ACK/NACK bit, as AVR XMEGA devices do not need to wake
up for transactions that are not addressed to it.

A slave device can slow down the bus frequency by stretching the clock periodically on a bit
level. This allows the slave to run at a lower system clock frequency. However, the overall per-
formance of the bus will be reduced accordingly. Both the master and slave device can
randomly stretch the clock on a byte level basis before and after the ACK/NACK bit. This pro-
vides time to process incoming or prepare outgoing data, or perform other time-critical tasks.

In the case where the slave is stretching the clock, the master will be forced into a wait state until
the slave is ready, and vice versa.

21.3.8 Arbitration
A master can start a bus transaction only if it has detected that the bus is idle. As the TWI bus is
a multi-master bus, it is possible that two devices may initiate a transaction at the same time.
This results in multiple masters owning the bus simultaneously. This is solved using an arbitra-
tion scheme where the master loses control of the bus if it is not able to transmit a high level on
the SDA line. The masters who lose arbitration must then wait until the bus becomes idle (i.e.,
wait for a STOP condition) before attempting to reacquire bus ownership. Slave devices are not
involved in the arbitration procedure.

Figure 21-9. TWI arbitration.

SDA

SCL
S

ACK/NACKbit 0bit 7 bit 6

Periodic clock
stretching

Random clock
stretching

Wakeup clock
stretching

DEVICE1_SDA

SDA
(wired-AND)

DEVICE2_SDA

SCL
S

bit 7 bit 6 bit 5 bit 4

DEVICE1 Loses arbitration
267
8331B–AVR–03/12

Atmel AVR XMEGA AU
Figure 21-9 shows an example where two TWI masters are contending for bus ownership. Both
devices are able to issue a START condition, but DEVICE1 loses arbitration when attempting to
transmit a high level (bit 5) while DEVICE2 is transmitting a low level.

Arbitration between a repeated START condition and a data bit, a STOP condition and a data
bit, or a repeated START condition and a STOP condition are not allowed and will require spe-
cial handling by software.

21.3.9 Synchronization
A clock synchronization algorithm is necessary for solving situations where more than one mas-
ter is trying to control the SCL line at the same time. The algorithm is based on the same
principles used for the clock stretching previously described. Figure 21-10 shows an example
where two masters are competing for control over the bus clock. The SCL line is the wired-AND
result of the two masters clock outputs.

Figure 21-10. Clock synchronization.

A high-to-low transition on the SCL line will force the line low for all masters on the bus, and they
will start timing their low clock period. The timing length of the low clock period can vary among
the masters. When a master (DEVICE1 in this case) has completed its low period, it releases the
SCL line. However, the SCL line will not go high until all masters have released it. Consequently,
the SCL line will be held low by the device with the longest low period (DEVICE2). Devices with
shorter low periods must insert a wait state until the clock is released. All masters start their high
period when the SCL line is released by all devices and has gone high. The device which first
completes its high period (DEVICE1) forces the clock line low, and the procedure is then
repeated. The result is that the device with the shortest clock period determines the high period,
while the low period of the clock is determined by the device with the longest clock period.

21.4 TWI Bus State Logic
The bus state logic continuously monitors the activity on the TWI bus lines when the master is
enabled. It continues to operate in all sleep modes, including power-down.

The bus state logic includes START and STOP condition detectors, collision detection, inactive
bus timeout detection, and a bit counter. Theseare used to determine the bus state. Software
can get the current bus state by reading the bus state bits in the master status register. The bus
state can be unknown, idle, busy, or owner, and is determined according to the state diagram
shown in Figure 21-11. The values of the bus state bits according to state are shown in binary in
the figure.

DEVICE1_SCL

SCL
(wired-AND)

Wait
State

DEVICE2_SCL

High Period
Count

Low Period
Count
268
8331B–AVR–03/12

Atmel AVR XMEGA AU
Figure 21-11. Bus state, state diagram.

After a system reset and/or TWI master enable, the bus state is unknown. The bus state
machine can be forced to enter idle by writing to the bus state bits accordingly. If no state is set
by application software, the bus state will become idle when the first STOP condition is detected.
If the master inactive bus timeout is enabled, the bus state will change to idle on the occurrence
of a timeout. After a known bus state is established, only a system reset or disabling of the TWI
master will set the state to unknown.

When the bus is idle, it is ready for a new transaction. If a START condition generated externally
is detected, the bus becomes busy until a STOP condition is detected. The STOP condition will
change the bus state to idle. If the master inactive bus timeout is enabled, the bus state will
change from busy to idle on the occurrence of a timeout.

If a START condition is generated internally while in idle state, the owner state is entered. If the
complete transaction was performed without interference, i.e., no collisions are detected, the
master will issue a STOP condition and the bus state will change back to idle. If a collision is
detected, the arbitration is assumed lost and the bus state becomes busy until a STOP condition
is detected. A repeated START condition will only change the bus state if arbitration is lost dur-
ing the issuing of the repeated START. Arbitration during repeated START can be lost only if the
arbitration has been ongoing since the first START condition. This happens if two masters send
the exact same ADDRESS+DATA before one of the masters issues a repeated START (Sr).

21.5 TWI Master Operation
The TWI master is byte-oriented, with an optional interrupt after each byte. There are separate
interrupts for master write and master read. Interrupt flags can also be used for polled operation.
There are dedicated status flags for indicating ACK/NACK received, bus error, arbitration lost,
clock hold, and bus state.

P + Timeout

Write ADDRESS

IDLE
(0b01)

S

BUSY
(0b11)

UNKNOWN
(0b00)

OWNER
(0b10)

Arbitration
Lost

Command P

Write
ADDRESS(Sr)

Sr

(S)

RESET

P + Timeout
269
8331B–AVR–03/12

Atmel AVR XMEGA AU
When an interrupt flag is set, the SCL line is forced low. This will give the master time to respond
or handle any data, and will in most cases require software interaction. Figure 21-12 shows the
TWI master operation. The diamond shaped symbols (SW) indicate where software interaction
is required. Clearing the interrupt flags releases the SCL line.

Figure 21-12. TWI master operation.

The number of interrupts generated is kept to a minimum by automatic handling of most condi-
tions. Quick command and smart mode can be enabled to auto-trigger operations and reduce
software complexity.

21.5.1 Transmitting Address Packets
After issuing a START condition, the master starts performing a bus transaction when the mas-
ter address register is written with the 7-bit slave address and direction bit. If the bus is busy, the
TWI master will wait until the bus becomes idle before issuing the START condition.

Depending on arbitration and the R/W direction bit, one of four distinct cases (M1 to M4) arises
following the address packet. The different cases must be handled in software.

21.5.1.1 Case M1: Arbitration lost or bus error during address packet
If arbitration is lost during the sending of the address packet, the master write interrupt flag and
arbitration lost flag are both set. Serial data output to the SDA line is disabled, and the SCL line
is released. The master is no longer allowed to perform any operation on the bus until the bus
state has changed back to idle.

A bus error will behave in the same way as an arbitration lost condition, but the error flag is set in
addition to the write interrupt and arbitration lost flags.

IDLE S BUSYBUSY P

Sr

P

M3

M3

M2

M2

M1

M1

R DATA

ADDRESS

W

A/ADATA

Wait for
IDLE

APPLICATION

SW

SW

Sr

P

M3

M2

BUSY M4ASW

A/A

A/A

A/A

M4

A

IDLE

IDLE

MASTER READ INTERRUPT + HOLD

MASTER WRITE INTERRUPT + HOLD

SW

SW

SW

BUSYR/W

SW Driver software

The master provides data
on the bus

Slave provides data on
the bus

A

A

R/W

BUSY M4

Bus state

Mn Diagram connections
270
8331B–AVR–03/12

Atmel AVR XMEGA AU
21.5.1.2 Case M2: Address packet transmit complete - Address not acknowledged by slave
If no slave device responds to the address, the master write interrupt flag and the master
received acknowledge flag are set. The clock hold is active at this point, preventing further activ-
ity on the bus.

21.5.1.3 Case M3: Address packet transmit complete - Direction bit cleared
If the master receives an ACK from the slave, the master write interrupt flag is set and the mas-
ter received acknowledge flag is cleared. The clock hold is active at this point, preventing further
activity on the bus.

21.5.1.4 Case M4: Address packet transmit complete - Direction bit set
If the master receives an ACK from the slave, the master proceeds to receive the next byte of
data from the slave. When the first data byte is received, the master read interrupt flag is set and
the master received acknowledge flag is cleared. The clock hold is active at this point, prevent-
ing further activity on the bus.

21.5.2 Transmitting Data Packets
Assuming case M3 above, the master can start transmitting data by writing to the master data
register. If the transfer was successful, the slave will signal with ACK. The master write interrupt
flag is set, the master received acknowledge flag is cleared, and the master can prepare new
data to send. During data transfer, the master is continuously monitoring the bus for collisions.

The received acknowledge flag must be checked by software for each data packet transmitted
before the next data packet can be transferred. The master is not allowed to continue transmit-
ting data if the slave signals a NACK.

If a collision is detected and the master loses arbitration during transfer, the arbitration lost flag is
set.

21.5.3 Receiving Data Packets
Assuming case M4 above, the master has already received one byte from the slave. The master
read interrupt flag is set, and the master must prepare to receive new data. The master must
respond to each byte with ACK or NACK. Indicating a NACK might not be successfully exe-
cuted, as arbitration can be lost during the transmission. If a collision is detected, the master
loses arbitration and the arbitration lost flag is set.

21.6 TWI Slave Operation
The TWI slave is byte-oriented with optional interrupts after each byte. There are separate slave
data and address/stop interrupts. Interrupt flags can also be used for polled operation. There are
dedicated status flags for indicating ACK/NACK received, clock hold, collision, bus error, and
read/write direction.

When an interrupt flag is set, the SCL line is forced low. This will give the slave time to respond
or handle data, and will in most cases require software interaction. Figure 21-13. shows the TWI
slave operation. The diamond shapes symbols (SW) indicate where software interaction is
required.
271
8331B–AVR–03/12

Atmel AVR XMEGA AU
Figure 21-13. TWI slave operation.

The number of interrupts generated is kept to a minimum by automatic handling of most condi-
tions. Quick command can be enabled to auto-trigger operations and reduce software
complexity.

Promiscuous mode can be enabled to allow the slave to respond to all received addresses.

21.6.1 Receiving Address Packets
When the TWI slave is properly configured, it will wait for a START condition to be detected.
When this happens, the successive address byte will be received and checked by the address
match logic, and the slave will ACK a correct address and store the address in the DATA regis-
ter. If the received address is not a match, the slave will not acknowledge and store address,
and will wait for a new START condition.

The slave address/stop interrupt flag is set when a START condition succeeded by a valid
address byte is detected. A general call address will also set the interrupt flag.

A START condition immediately followed by a STOP condition is an illegal operation, and the
bus error flag is set.

The R/W direction flag reflects the direction bit received with the address. This can be read by
software to determine the type of operation currently in progress.

Depending on the R/W direction bit and bus condition, one of four distinct cases (S1 to S4)
arises following the address packet. The different cases must be handled in software.

21.6.1.1 Case S1: Address packet accepted - Direction bit set
If the R/W direction flag is set, this indicates a master read operation. The SCL line is forced low
by the slave, stretching the bus clock. If ACK is sent by the slave, the slave hardware will set the
data interrupt flag indicating data is needed for transmit. Data, repeated START, or STOP can
be received after this. If NACK is sent by the slave, the slave will wait for a new START condition
and address match.

21.6.1.2 Case S2: Address packet accepted - Direction bit cleared
If the R/W direction flag is cleared, this indicates a master write operation. The SCL line is forced
low, stretching the bus clock. If ACK is sent by the slave, the slave will wait for data to be

S

S3

ADDRESSS2 A

S1

R

W

DATA A/A

DATA

P S2

Sr S3

P S2

Sr S3

SLAVE ADDRESS INTERRUPT SLAVE DATA INTERRUPT

A

Collision
(SMBus)

SW

SW SW

SW

A/A A/A

SW Release
Hold S1

A S1

SWInterrupt on STOP
Condition Enabled

S1

SW Driver software

The master provides data
on the bus

Slave provides data on
the bus

Sn Diagram connections
272
8331B–AVR–03/12

Atmel AVR XMEGA AU
received. Data, repeated START, or STOP can be received after this. If NACK is sent, the slave
will wait for a new START condition and address match.

21.6.1.3 Case S3: Collision
If the slave is not able to send a high level or NACK, the collision flag is set, and it will disable the
data and acknowledge output from the slave logic. The clock hold is released. A START or
repeated START condition will be accepted.

21.6.1.4 Case S4: STOP condition received.
When the STOP condition is received, the slave address/stop flag will be set, indicating that a
STOP condition, and not an address match, occurred.

21.6.2 Receiving Data Packets
The slave will know when an address packet with R/W direction bit cleared has been success-
fully received. After acknowledging this, the slave must be ready to receive data. When a data
packet is received, the data interrupt flag is set and the slave must indicate ACK or NACK. After
indicating a NACK, the slave must expect a STOP or repeated START condition.

21.6.3 Transmitting Data Packets
The slave will know when an address packet with R/W direction bit set has been successfully
received. It can then start sending data by writing to the slave data register. When a data packet
transmission is completed, the data interrupt flag is set. If the master indicates NACK, the slave
must stop transmitting data and expect a STOP or repeated START condition.

21.7 Enabling External Driver Interface
An external driver interface can be enabled. When this is done, the internal TWI drivers with
input filtering and slew rate control are bypassed. The normal I/O pin function is used, and the
direction must be configured by the user software. When this mode is enabled, an external TWI
compliant tri-state driver is needed for connecting to a TWI bus.

By default, port pins 0 (Pn0) and 1 (Pn1) are used for SDA and SCL. The external driver inter-
face uses port pins 0 to 3 for the SDA_IN, SCL_IN, SDA_OUT, and SCL_OUT signals.
273
8331B–AVR–03/12

Atmel AVR XMEGA AU
21.8 Register Description – TWI

21.8.1 CTRL – Common Control Register

• Bit 7:3 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

• Bit 2:1 – SDAHOLD[1:0]: SDA Hold Time Enable.
 Setting these bits to one enables an internal hold time on SDA with respect to the negative edge
of SCL.

• Bit 0 – EDIEN: External Driver Interface Enable
Setting this bit enables the use of the external driver interface, and clearing this bit enables nor-
mal two-wire mode. See Table 21-2 on page 274 for details.

Bit 7 6 5 4 3 2 1 0

+0x00 – – – – – SDAHOLD[1:0] EDIEN CTRL

Read/Write R R R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 21-1. SDA hold time.

SDAHOLD[1:0] Group Configuration Description

00 OFF SDA hold time off

01 50NS Typical 50ns hold time

10 300NS Typical 100ns hold time

11 400NS Typical 400ns hold time

Table 21-2. External driver interface enable.

EDIEN Mode Comment

0 Normal TWI Two-pin interface,slew rate control, and input filter.

1 External driver interface
Four-pin interface, standard I/O, no slew rate control,
and no input filter.
274
8331B–AVR–03/12

Atmel AVR XMEGA AU
21.9 Register Description – TWI Master

21.9.1 CTRLA – Control register A

• Bit 7:6 – INTLVL[1:0]: Interrupt Level
These bits select the interrupt level for the TWI master interrupt, as described in ”Interrupts and
Programmable Multilevel Interrupt Controller” on page 134.

• Bit 5 – RIEN: Read Interrupt Enable
Setting the read interrupt enable (RIEN) bit enables the read interrupt when the read interrupt
flag (RIF) in the STATUS register is set. In addition the INTLVL bits must be nonzero for TWI
master interrupts to be generated.

• Bit 4 – WIEN: Write Interrupt Enable
Setting the write interrupt enable (WIEN) bit enables the write interrupt when the write interrupt
flag (WIF) in the STATUS register is set. In addition the INTLVL bits must be nonzero for TWI
master interrupts to be generated.

• Bit 3 – ENABLE: Enable TWI Master
Setting the enable TWI master (ENABLE) bit enables the TWI master.

• Bit 2:0 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

21.9.2 CTRLB – Control register B

• Bit 7:4 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

• Bit 3:2 – TIMEOUT[1:0]: Inactive Bus Timeout
Setting the inactive bus timeout (TIMEOUT) bits to a nonzero value will enable the inactive bus
timeout supervisor. If the bus is inactive for longer than the TIMEOUT setting, the bus state logic
will enter the idle state.

Table 21-3 on page 276 lists the timeout settings.

Bit 7 6 5 4 3 2 1 0

+0x00 INTLVL[1:0] RIEN WIEN ENABLE – – – CTRLA

Read/Write R/W R/W R/W R/W R/W R R R

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x01 – – – – TIMEOUT[1:0] QCEN SMEN CTRLB

Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
275
8331B–AVR–03/12

Atmel AVR XMEGA AU
• Bit 1 – QCEN: Quick Command Enable
When quick command is enabled, the corresponding interrupt flag is set immediately after the
slave acknowledges the address (read or write interrupt). At this point, software can issue either
a STOP or a repeated START condition.

• Bit 0 – SMEN: Smart Mode Enable
Setting this bit enables smart mode. When smart mode is enabled, the acknowledge action, as
set by the ACKACT bit in the CTRLC register, is sent immediately after reading the DATA
register.

21.9.3 CTRLC – Control register C

• Bits 7:3 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

• Bit 2 – ACKACT: Acknowledge Action
This bit defines the master's acknowledge behavior in master read mode. The acknowledge
action is executed when a command is written to the CMD bits. If SMEN in the CTRLB register is
set, the acknowledge action is performed when the DATA register is read.

Table 21-4 lists the acknowledge actions.

• Bit 1:0 – CMD[1:0]: Command
Writing the command (CMD) bits triggers a master operation as defined by Table 21-5. The
CMD bits are strobe bits, and always read as zero. The acknowledge action is only valid in mas-
ter read mode (R). In master write mode (W), a command will only result in a repeated START or

Table 21-3. TWI master inactive bus timeout settings.

TIMEOUT[1:0] Group Configuration Description

00 DISABLED Disabled, normally used for I2C

01 50US 50µs, normally used for SMBus at 100kHz

10 100US 100µs

11 200US 200µs

Bit 7 6 5 4 3 2 1 0

+0x02 – – – – – ACKACT CMD[1:0] CTRLC

Read/Write R R R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 21-4. ACKACT bit description.

ACKACT Action

0 Send ACK

1 Send NACK
276
8331B–AVR–03/12

Atmel AVR XMEGA AU
STOP condition. The ACKACT bit and the CMD bits can be written at the same time, and then
the acknowledge action will be updated before the command is triggered.

Writing a command to the CMD bits will clear the master interrupt flags and the CLKHOLD flag.

21.9.4 STATUS – Status register

• Bit 7 – RIF: Read Interrupt Flag
This flag is set when a byte is successfully received in master read mode; i.e., no arbitration was
lost or bus error occurred during the operation. Writing a one to this bit location will clear RIF.
When this flag is set, the master forces the SCL line low, stretching the TWI clock period. Clear-
ing the interrupt flags will release the SCL line.

This flag is also cleared automatically when:

• Writing to the ADDR register

• Writing to the DATA register

• Reading the DATA register

• Writing a valid command to the CMD bits in the CTRLC register

• Bit 6 – WIF: Write Interrupt Flag
This flagis set when a byte is transmitted in master write mode. The flag is set regardless of the
occurrence of a bus error or an arbitration lost condition. WIF is also set if arbitration is lost dur-
ing sending of a NACK in master read mode, and if issuing a START condition when the bus
state is unknown. Writing a one to this bit location will clear WIF. When this flag is set, the mas-
ter forces the SCL line low, stretching the TWI clock period. Clearing the interrupt flags will
release the SCL line.

The flag is also cleared automatically for the same conditions as RIF.

Table 21-5. CMD bits description.

CMD[1:0]
Group

Configuration MODE Operation

00 NOACT X Reserved

01 START X
Execute acknowledge action succeeded by
repeated START condition

10 BYTEREC

W No operation

R
Execute acknowledge action succeeded by
a byte receive

11 STOP X
Execute acknowledge action succeeded by
issuing a STOP condition

Bit 7 6 5 4 3 2 1 0

+0x03 RIF WIF CLKHOLD RXACK ARBLOST BUSERR BUSSTATE[1:0] STATUS

Read/Write R/W R/W R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
277
8331B–AVR–03/12

Atmel AVR XMEGA AU
• Bit 5 – CLKHOLD: Clock Hold
This flag is set when the master is holding the SCL line low. This is a status flag and a read-only
flag that is set when RIF or WIF is set. Clearing the interrupt flags and releasing the SCL line will
indirectly clear this flag.

The flag is also cleared automatically for the same conditions as RIF.

• Bit 4 – RXACK: Received Acknowledge
This flag contains the most recently received acknowledge bit from the slave. This is a read-only
flag. When read as zero, the most recent acknowledge bit from the slave was ACK, and when
read as one the most recent acknowledge bit was NACK.

• Bit 3 – ARBLOST: Arbitration Lost
This flag is set if arbitration is lost while transmitting a high data bit or a NACK bit, or while issu-
ing a START or repeated START condition on the bus. Writing a one to this bit location will clear
ARBLOST.

Writing the ADDR register will automatically clear ARBLOST.

• Bit 2 – BUSERR: Bus Error
This flag is set if an illegal bus condition has occurred. An illegal bus condition occurs if a
repeated START or a STOP condition is detected, and the number of received or transmitted
bits from the previous START condition is not a multiple of nine. Writing a one to this bit location
will clear BUSERR.

Writing the ADDR register will automatically clear BUSERR.

• Bit 1:0 – BUSSTATE[1:0]: Bus State
These bits indicate the current TWI bus state as defined in Table 21-6. The change of bus state
is dependent on bus activity. Refer to the Section 21.4 ”TWI Bus State Logic” on page 268.

Writing 01 to the BUSSTATE bits forces the bus state logic into the idle state. The bus state logic
cannot be forced into any other state. When the master is disabled, and after reset, the bus state
logic is disabled and the bus state is unknown.

21.9.5 BAUD – Baud Rate register

Table 21-6. TWI master bus state.

BUSSTATE[1:0] Group Configuration Description

00 UNKNOWN Unknown bus state

01 IDLE Idle bus state

10 OWNER Owner bus state

11 BUSY Busy bus state

Bit 7 6 5 4 3 2 1 0

+0x04 BAUD[7:0] BAUD

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
278
8331B–AVR–03/12

Atmel AVR XMEGA AU
The baud rate (BAUD) register defines the relation between the system clock and the TWI bus
clock (SCL) frequency. The frequency relation can be expressed by using the following
equation:

 [1]

The BAUD register must be set to a value that results in a TWI bus clock frequency (fTWI) equal
or less than 100kHz or 400kHz, depending on which standard the application should comply
with. The following equation [2] expresses equation [1] solved for the BAUD value:

 [2]

The BAUD register should be written only while the master is disabled.

21.9.6 ADDR – Address register

When the address (ADDR) register is written with a slave address and the R/W bit while the bus
is idle, a START condition is issued and the 7-bit slave address and the R/W bit are transmitted
on the bus. If the bus is already owned when ADDR is written, a repeated START is issued. If
the previous transaction was a master read and no acknowledge is sent yet, the acknowledge
action is sent before the repeated START condition.

After completing the operation and the acknowledge bit from the slave is received, the SCL line
is forced low if arbitration was not lost. WIF is set.

If the bus state is unknown when ADDR is written, WIF is set and BUSERR is set.

All TWI master flags are automatically cleared when ADDR is written. This includes BUSERR,
ARBLOST, RIF, and WIF. The master ADDR can be read at any time without interfering with
ongoing bus activity.

21.9.7 DATA – Data register

The data (DATA) register is used when transmitting and receiving data. During data transfer,
data are shifted from/to the DATA register and to/from the bus. This implies that the DATA regis-
ter cannot be accessed during byte transfers, and this is prevented by hardware. The DATA

fTWI
fsys

2(5 BAUD())+
--[Hz]=

BAUD
fsys

2fTWI
-------------- 5–=

Bit 7 6 5 4 3 2 1 0

+0x05 ADDR[7:0] ADDR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x06 DATA[7:0] DATA

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
279
8331B–AVR–03/12

Atmel AVR XMEGA AU
register can only be accessed when the SCL line is held low by the master; i.e., when CLKHOLD
is set.

In master write mode, writing the DATA register will trigger a data byte transfer followed by the
master receiving the acknowledge bit from the slave. WIF and CLKHOLD are set.

In master read mode, RIF and CLKHOLD are set when one byte is received in the DATA regis-
ter. If smart mode is enabled, reading the DATA register will trigger the bus operation as set by
the ACKACT bit. If a bus error occurs during reception, WIF and BUSERR are set instead of
RIF.

Accessing the DATA register will clear the master interrupt flags and CLKHOLD.

21.10 Register Description – TWI Slave

21.10.1 CTRLA – Control register A

• Bit 7:6 – INTLVL[1:0]: Interrupt Level
These bits select the interrupt level for the TWI master interrupt, as described in ”Interrupts and
Programmable Multilevel Interrupt Controller” on page 134.

• Bit 5 – DIEN: Data Interrupt Enable
Setting the data interrupt enable (DIEN) bit enables the data interrupt when the data interrupt
flag (DIF) in the STATUS register is set. The INTLVL bits must be nonzero for the interrupt to be
generated.

• Bit 4 – APIEN: Address/Stop Interrupt Enable
Setting the address/stop interrupt enable (APIEN) bit enables the address/stop interrupt when
the address/stop interrupt flag (APIF) in the STATUS register is set. The INTLVL bits must be
nonzero for interrupt to be generated.

• Bit 3 – ENABLE: Enable TWI Slave
Setting this bit enables the TWI slave.

• Bit 2 – PIEN: Stop Interrupt Enable
Setting the this bit will cause APIF in the STATUS register to be set when a STOP condition is
detected.

• Bit 1 – PMEN: Promiscuous Mode Enable
By setting the this bit, the slave address match logic responds to all received addresses. If this
bit is cleared, the address match logic uses the ADDR register to determine which address to
recognize as its own address.

Bit 7 6 5 4 3 2 1 0

+0x00 INTLVL[1:0] DIEN APIEN ENABLE PIEN PMEN SMEN CTRLA

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
280
8331B–AVR–03/12

Atmel AVR XMEGA AU
• Bit 0 – SMEN: Smart Mode Enable
This bit enables smart mode. When Smart mode is enabled, the acknowledge action, as set by
the ACKACT bit in the CTRLB register, is sent immediately after reading the DATA register.

21.10.2 CTRLB – Control register B

• Bit 7:3 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

• Bit 2 – ACKACT: Acknowledge Action
This bit defines the slave's acknowledge behavior after an address or data byte is received from
the master. The acknowledge action is executed when a command is written to the CMD bits. If
the SMEN bit in the CTRLA register is set, the acknowledge action is performed when the DATA
register is read.

Table 21-7 lists the acknowledge actions.

• Bit 1:0 – CMD[1:0]: Command
Writing these bits trigger the slave operation as defined by Table 21-8. The CMD bits are strobe
bits and always read as zero. The operation is dependent on the slave interrupt flags, DIF and
APIF. The acknowledge action is only executed when the slave receives data bytes or address
byte from the master.

Bit 7 6 5 4 3 2 1 0

+0x01 – – – – – ACKACT CMD[1:0] CTRLB

Read/Write R R R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 21-7. TWI slave acknowledge actions.

ACKACT Action

0 Send ACK

1 Send NACK

Table 21-8. TWI slave command.

CMD[1:0]
Group

Configuration DIR Operation

00 NOACT X No action

01 X Reserved

10 COMPLETE

Used to complete transaction

0
Execute acknowledge action succeeded by waiting
for any START (S/Sr) condition

1 Wait for any START (S/Sr) condition
281
8331B–AVR–03/12

Atmel AVR XMEGA AU
Writing the CMD bits will automatically clear the slave interrupt flags and CLKHOLD, and
release the SCL line. The ACKACT bit and CMD bits can be written at the same time, and then
the acknowledge action will be updated before the command is triggered.

21.10.3 STATUS – Status register

• Bit 7 – DIF: Data Interrupt Flag
This fflag is set when a data byte is successfully received; i.e., no bus error or collision occurred
during the operation. Writing a one to this bit location will clear DIF. When this flag is set, the
slave forces the SCL line low, stretching the TWI clock period. Clearing the interrupt flags will
release the SCL line.

This flag is also cleared automatically when writing a valid command to the CMD bits in the
CTRLB register

• Bit 6 – APIF: Address/Stop Interrupt Flag
This flag is set when the slave detects that a valid address has been received, or when a trans-
mit collision is detected. If the PIEN bit in the CTRLA register is set, a STOP condition on the
bus will also set APIF. Writing a one to this bit location will clear APIF. When set for an address
interrupt, the slave forces the SCL line low, stretching the TWI clock period. Clearing the inter-
rupt flags will release the SCL line.

The flag is also cleared automatically for the same condition as DIF.

• Bit 5 – CLKHOLD: Clock Hold
This flag is set when the slave is holding the SCL line low.This is a status flag and a read-only bit
that is set when DIF or APIF is set. Clearing the interrupt flags and releasing the SCL line will
indirectly clear this flag.

11 RESPONSE

Used in response to an address byte (APIF is set)

0
Execute acknowledge action succeeded by reception
of next byte

1
Execute acknowledge action succeeded by DIF
being set

Used in response to a data byte (DIF is set)

0
Execute acknowledge action succeeded by waiting
for the next byte

1 No operation

Table 21-8. TWI slave command. (Continued)

CMD[1:0]
Group

Configuration DIR Operation

Bit 7 6 5 4 3 2 1 0

+0x02 DIF APIF CLKHOLD RXACK COLL BUSERR DIR AP STATUS

Read/Write R/W R/W R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
282
8331B–AVR–03/12

Atmel AVR XMEGA AU
• Bit 4 – RXACK: Received Acknowledge
This flag contains the most recently received acknowledge bit from the master. This is a read-
only flag. When read as zero, the most recent acknowledge bit from the maser was ACK, and
when read as one, the most recent acknowledge bit was NACK.

• Bit 3 – COLL: Collision
This flag is set when a slave has not been able to transfer a high data bit or a NACK bit. If a col-
lision is detected, the slave will commence its normal operation, disable data, and acknowledge
output, and no low values will be shifted out onto the SDA line. Writing a one to this bit location
will clear COLL.

The flag is also cleared automatically when a START or repeated START condition is detected.

• Bit 2 – BUSERR: TWI Slave Bus Error
This flag is set when an illegal bus condition occurs during a transfer. An illegal bus condition
occurs if a repeated START or a STOP condition is detected,and the number of bits from the
previous START condition is not a multiple of nine. Writing a one to this bit location will clear
BUSERR.

For bus errors to be detected, the bus state logic must be enabled. This is done by enabling the
TWI master.

• Bit 1 – DIR: Read/Write Direction
The R/W direction (DIR) flag reflects the direction bit from the last address packet received from
a master. When this bit is read as one, a master read operation is in progress. When read as
zero, a master write operation is in progress.

• Bit 0 – AP: Slave Address or Stop
This flag indicates whether a valid address or a STOP condition caused the last setting of APIF
in the STATUS register.

21.10.4 ADDR – Address register
The TWI slave address register should be loaded with the 7-bit slave address (in the seven most
significant bits of ADDR) to which the TWI will respond. The lsb of ADDR is used to enable rec-
ognition of the general call address (0x00).

• Bit 7:1 – ADDR[7:1]: TWI Slave Address
SThis register contains the TWI slave address used by the slave address match logic to deter-
mine if a master has addressed the slave. The seven most-significant bits (ADDR[7:1])
represent the slave address.

Table 21-9. TWI slave address or stop.

AP Description

0 A STOP condition generated the interrupt on APIF

1 Address detection generated the interrupt on APIF

Bit 7 6 5 4 3 2 1 0

+0x03 ADDR[7:1] ADDR[0] ADDR

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
283
8331B–AVR–03/12

Atmel AVR XMEGA AU
When using 10-bit addressing, the address match logic only supports hardware address recog-
nition of the first byte of a 10-bit address. By setting ADDR[7:1] = 0b11110nn, ”nn” represents
bits 9 and 8 of the slave address. The next byte received is bits 7 to 0 in the 10-bit address, and
this must be handled by software.

When the address match logic detects that a valid address byte is received, APIF is set and the
DIR flag is updated.

If the PMEN bit in CTRLA is set, the address match logic responds to all addresses transmitted
on the TWI bus. The ADDR register is not used in this mode.

• Bit 0 – ADDR: General Call Recognition Enable
When ADDR[0] is set, this enables general call address recognition logic so the device can
respond to a general address call that addresses all devices on the bus.

21.10.5 DATA – Data register

The data (DATA) register is used when transmitting and received data. During data transfer,
data are shifted from/to the DATA register and to/from the bus. This implies that the DATA regis-
ter cannot be accessed during byte transfers, and this is prevented by hardware. The DATA
register can be accessed only when the SCL line is held low by the slave; i.e., when CLKHOLD
is set.

When a master is reading data from the slave, data to send must be written to the DATA regis-
ter. The byte transfer is started when the master starts to clock the data byte from the slave,
followed by the slave receiving the acknowledge bit from the master. DIF and CLKHOLD are set.

When a master writes data to the slave, DIF and CLKHOLD are set when one byte has been
received in the DATA register. If smart mode is enabled, reading the DATA register will trigger
the bus operation as set by the ACKACT bit.

Accessing the DATA register will clear the slave interrupt flags and CLKHOLD. When an
address match occurs, the received address will be stored in the DATA register.

21.10.6 ADDRMASK – Address Mask register

• Bit 7:1 – ADDRMASK[7:1]: Address Mask
These bits can act as a second address match register or as an address mask register, depend-
ing on the ADDREN setting.

If ADDREN is set to zero, ADDRMASK can be loaded with a 7-bit slave address mask. Each bit
in ADDRMASK can mask (disable) the corresponding address bit in the ADDR register. If the

Bit 7 6 5 4 3 2 1 0

+0x04 DATA[7:0] DATA

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x05 ADDRMASK[7:1] ADDREN ADDRMASK

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
284
8331B–AVR–03/12

Atmel AVR XMEGA AU
mask bit is one, the address match between the incoming address bit and the corresponding bit
in ADDR is ignored; i.e., masked bits will always match.

If ADDREN is set to one, ADDRMASK can be loaded with a second slave address in addition to
the ADDR register. In this mode, the slave will match on two unique addresses, one in ADDR
and the other in ADDRMASK.

• Bit 0 – ADDREN: Address Enable
By default, this bit is zero, and the ADDRMASK bits acts as an address mask to the ADDR reg-
ister. If this bit is set to one, the slave address match logic responds to the two unique addresses
in ADDR and ADDRMASK.
285
8331B–AVR–03/12

Atmel AVR XMEGA AU
21.11 Register Summary - TWI

21.12 Register Summary - TWI Master

21.13 Register Summary - TWI Slave

21.14 Interrupt Vector Summary

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page
+0x00 CTRL – – – – – SDAHOLD EDIEN 274

+0x01 MASTER Offset address for TWI Master

+0x08 SLAVE Offset address for TWI Slave

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page
+0x00 CTRLA INTLVL[1:0] RIEN WIEN ENABLE – – – 275

+0x01 CTRLB – – – – TIMEOUT[1:0] QCEN SMEN 275

+0x02 CTRLC – – – – – ACKACT CMD[1:0] 276

+0x03 STATUS RIF WIF CLKHOLD RXACK ARBLOST BUSERR BUSSTATE[1:0] 277

+0x04 BAUD BAUD[7:0] 278

+0x05 ADDR ADDR[7:0] 279

+0x06 DATA DATA[7:0] 279

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page
+0x00 CTRLA INTLVL[1:0] DIEN APIEN ENABLE PIEN TPMEN SMEN 280

+0x01 CTRLB – – – – – ACKACT CMD[1:0] 281

+0x02 STATUS DIF APIF CLKHOLD RXACK COLL BUSERR DIR AP 282

+0x03 ADDR ADDR[7:0] 283

+0x04 DATA DATA[7:0] 284

+0x05 ADDRMASK ADDRMASK[7:1] ADDREN 284

Table 21-10. TWI interrupt vectors and their word offset addresses.

Offset Source Interrupt Description

0x00 SLAVE_vect TWI slave interrupt vector

0x02 MASTER_vect TWI master interrupt vector
286
8331B–AVR–03/12

Atmel AVR XMEGA AU
22. SPI – Serial Peripheral Interface

22.1 Features
• Full-duplex, three-wire synchronous data transfer
• Master or slave operation
• Lsb first or msb first data transfer
• Eight programmable bit rates
• Interrupt flag at the end of transmission
• Write collision flag to indicate data collision
• Wake up from idle sleep mode
• Double speed master mode

22.2 Overview
The Serial Peripheral Interface (SPI) is a high-speed synchronous data transfer interface using
three or four pins. It allows fast communication between an XMEGA device and peripheral
devices or between several microcontrollers. The SPI supports full-duplex communication.

A device connected to the bus must act as a master or slave.The master initiates and controls all
data transactions. The interconnection between master and slave devices with SPI is shown in
Figure 22-1 on page 287. The system consists of two shift registers and a master clock genera-
tor. The SPI master initiates the communication cycle by pulling the slave select (SS) signal low
for the desired slave. Master and slave prepare the data to be sent in their respective shift regis-
ters, and the master generates the required clock pulses on the SCK line to interchange data.
Data are always shifted from master to slave on the master output, slave input (MOSI) line, and
from slave to master on the master input, slave output (MISO) line. After each data packet, the
master can synchronize the slave by pulling the SS line high.

Figure 22-1. SPI master-slave interconnection.

The SPI module is unbuffered in the transmit direction and single buffered in the receive direc-
tion. This means that bytes to be transmitted cannot be written to the SPI DATA register before
the entire shift cycle is completed. When receiving data, a received character must be read from
the DATA register before the next character has been completely shifted in. Otherwise, the first
byte will be lost.

In SPI slave mode, the control logic will sample the incoming signal on the SCK pin. To ensure
correct sampling of this clock signal, the minimum low and high periods must each be longer
than two CPU clock cycles.

SHIFT
ENABLE
287
8331B–AVR–03/12

Atmel AVR XMEGA AU
When the SPI module is enabled, the data direction of the MOSI, MISO, SCK, and SS pins is
overridden according to Table 22-1. The pins with user-defined direction must be configured
from software to have the correct direction according to the application.

22.3 Master Mode
In master mode, the SPI interface has no automatic control of the SS line. If the SS pin is used,
it must be configured as output and controlled by user software. If the bus consists of several
SPI slaves and/or masters, a SPI master can use general purpose I/O pins to control the SS line
to each of the slaves on the bus.

Writing a byte to the DATA register starts the SPI clock generator and the hardware shifts the
eight bits into the selected slave. After shifting one byte, the SPI clock generator stops and the
SPI interrupt flag is set. The master may continue to shift the next byte by writing new data to the
DATA register, or can signal the end of the transfer by pulling the SS line high. The last incoming
byte will be kept in the buffer register.

If the SS pin is not used and is configured as input, it must be held high to ensure master opera-
tion. If the SS pin is set as input and is being driven low, the SPI module will interpret this as
another master trying to take control of the bus. To avoid bus contention, the master will take the
following action:

1. The master enters slave mode.

2. The SPI interrupt flag is set.

22.4 Slave Mode
In slave mode, the SPI module will remain sleeping with the MISO line tri-stated as long as the
SS pin is driven high. In this state, software may update the contents of the DATA register, but
the data will not be shifted out by incoming clock pulses on the SCK pin until the SS pin is driven
low. If SS is driven low, the slave will start to shift out data on the first SCK clock pulse. When
one byte has been completely shifted, the SPI interrupt flag is set. The slave may continue plac-
ing new data to be sent into the DATA register before reading the incoming data. The last
incoming byte will be kept in the buffer register.

When SS is driven high, the SPI logic is reset, and the SPI slave will not receive any new data.
Any partially received packet in the shift register will be dropped.

As the SS pin is used to signal the start and end of a transfer, it is also useful for doing
packet/byte synchronization, keeping the slave bit counter synchronous with the master clock
generator.

Table 22-1. SPI pin override and directions.

Pin Master Mode Slave Mode

MOSI User defined Input

MISO Input User defined

SCK User defined Input

SS User defined Input
288
8331B–AVR–03/12

Atmel AVR XMEGA AU
22.5 Data Modes
There are four combinations of SCK phase and polarity with respect to serial data. The SPI data
transfer formats are shown in Figure 22-2. Data bits are shifted out and latched in on opposite
edges of the SCK signal, ensuring sufficient time for data signals to stabilize.

The leading edge is the first clock edge of a clock cycle. The trailing edge is the last clock edge
of a clock cycle.

Figure 22-2. SPI transfer modes.

22.6 DMA Support
DMA support on the SPI module is available only in slave mode. The SPI slave can trigger a
DMA transfer as one byte has been shifted into the DATA register. It is possible, however, to use
the XMEGA USART in SPI mode and then have DMA support in master mode. For details, refer
to ”USART in Master SPI Mode” on page 307.

Bit 1
Bit 6

LSB
MSB

Mode 0

SAMPLE I
MOSI/MISO

CHANGE 0
MOSI PIN

CHANGE 0
MISO PIN

Mode 2

SS

MSB
LSB

Bit 6
Bit 1

Bit 5
Bit 2

Bit 4
Bit 3

Bit 3
Bit 4

Bit 2
Bit 5

MSB first (DORD = 0)
LSB first (DORD = 1)

Mode 1

SAMPLE I
MOSI/MISO

CHANGE 0
MOSI PIN

CHANGE 0
MISO PIN

Mode 3

SS

MSB
LSB

Bit 6
Bit 1

Bit 5
Bit 2

Bit 4
Bit 3

Bit 3
Bit 4

Bit 2
Bit 5

Bit 1
Bit 6

LSB
MSB

MSB first (DORD = 0)
LSB first (DORD = 1)
289
8331B–AVR–03/12

Atmel AVR XMEGA AU
22.7 Register Description

22.7.1 CTRL – Control register

• Bit 7 – CLK2X: Clock Double
When this bit is set, the SPI speed (SCK frequency) will be doubled in master mode (see Table
22-3 on page 291).

• Bit 6 – ENABLE: Enable
Setting this bit enables the SPI module. This bit must be set to enable any SPI operations.

• Bit 5 – DORD: Data Order
DORD decides the data order when a byte is shifted out from the DATA register. When DORD is
written to one, the least-significant bit (lsb) of the data byte is transmitted first, and when DORD
is written to zero, the most-significant bit (msb) of the data byte is transmitted first.

• Bit 4 – MASTER: Master Select
This bit selects master mode when written to one, and slave mode when written to zero. If SS is
configured as an input and driven low while master mode is set, master mode will be cleared.

• Bit 3:2 – MODE[1:0]: Transfer Mode
These bits select the transfer mode. The four combinations of SCK phase and polarity with
respect to the serial data are shown in Table 22-2 on page 290. These bits decide whether the
first edge of a clock cycle (leading edge) is rising or falling, and whether data setup and sample
occur on the leading or trailing edge.

When the leading edge is rising, the SCK signal is low when idle, and when the leading edge is
falling, the SCK signal is high when idle.

• Bits 1:0 – PRESCALER[1:0]: Clock Prescaler
These two bits control the SPI clock rate configured in master mode. These bits have no effect in
slave mode. The relationship between SCK and the peripheral clock frequency (clkPER) is
shown in Table 22-3 on page 291.

Bit 7 6 5 4 3 2 1 0

+0x00 CLK2X ENABLE DORD MASTER MODE[1:0] PRESCALER[1:0] CTRL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 22-2. SPI transfer modes.

MODE[1:0] Group Configuration Leading Edge Trailing Edge

00 0 Rising, sample Falling, setup

01 1 Rising, setup Falling, sample

10 2 Falling, sample Rising, setup

11 3 Falling, setup Rising, sample
290
8331B–AVR–03/12

Atmel AVR XMEGA AU
22.7.2 INTCTRL – Interrupt Control register

• Bit 7:2 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

• Bit 1:0 – INTLVL[1:0]: Interrupt Level
These bits enable the SPI interrupt and select the interrupt level, as described in ”Interrupts and
Programmable Multilevel Interrupt Controller” on page 134. The enabled interrupt will be trig-
gered when IF in the STATUS register is set.

22.7.3 STATUS – Status register

• Bit 7 – IF: Interrupt Flag
This flag is set when a serial transfer is complete and one byte is completely shifted in/out of the
DATA register. If SS is configured as input and is driven low when the SPI is in master mode,
this will also set this flag. IF is cleared by hardware when executing the corresponding interrupt
vector. Alternatively, the IF flag can be cleared by first reading the STATUS register when IF is
set, and then accessing the DATA register.

Table 22-3. Relationship between SCK and the peripheral clock (ClkPER) frequency.

CLK2X PRESCALER[1:0] SCK Frequency

0 00 ClkPER/4

0 01 ClkPER/16

0 10 ClkPER/64

0 11 ClkPER/128

1 00 ClkPER/2

1 01 ClkPER/8

1 10 ClkPER/32

1 11 ClkPER/64

Bit 7 6 5 4 3 2 1 0

+0x01 – – – – – – INTLVL[1:0] INTCTRL

Read/Write R R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x02 IF WRCOL – – – – – – STATUS

Read/Write R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0
291
8331B–AVR–03/12

Atmel AVR XMEGA AU
• Bit 6 – WRCOL: Write Collision Flag
The WRCOL flag is set if the DATA register is written during a data transfer. This flag is cleared
by first reading the STATUS register when WRCOL is set, and then accessing the DATA
register.

• Bit 5:0 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

22.7.4 DATA – Data register

The DATA register is used for sending and receiving data. Writing to the register initiates the
data transmission, and the byte written to the register will be shifted out on the SPI output line.
Reading the register causes the shift register receive buffer to be read, returning the last byte
successfully received.

22.8 Register Summary

22.9 Interrupt vector Summary

Bit 7 6 5 4 3 2 1 0

+0x03 DATA[7:0] DATA

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page
+0x00 CTRL CLK2X ENABLE DORD MASTER MODE[1:0] PRESCALER[1:0] 290

+0x01 INTCTRL – – – – – – INTLVL[1:0] 291

+0x02 STATUS IF WRCOL – – – – – – 291

+0x03 DATA DATA[7:0] 292

Table 22-4. SPI interrupt vector and its offset word address.

Offset Source Interrupt Description

0x00 SPI_vect SPI interrupt vector
292
8331B–AVR–03/12

Atmel AVR XMEGA AU
23. USART

23.1 Features
• Full-duplex operation
• Asynchronous or synchronous operation

– Synchronous clock rates up to 1/2 of the device clock frequency
– Asynchronous clock rates up to 1/8 of the device clock frequency

• Supports serial frames with 5, 6, 7, 8, or 9 data bits and 1 or 2 stop bits
• Fractional baud rate generator

– Can generate desired baud rate from any system clock frequency
– No need for external oscillator with certain frequencies

• Built-in error detection and correction schemes
– Odd or even parity generation and parity check
– Data overrun and framing error detection
– Noise filtering includes false start bit detection and digital low-pass filter

• Separate interrupts for
– Transmit complete
– Transmit data register empty
– Receive complete

• Multiprocessor communication mode
– Addressing scheme to address a specific devices on a multidevice bus
– Enable unaddressed devices to automatically ignore all frames

• Master SPI mode
– Double buffered operation
– Configurable data order
– Operation up to 1/2 of the peripheral clock frequency

• IRCOM module for IrDA compliant pulse modulation/demodulation

23.2 Overview
The universal synchronous and asynchronous serial receiver and transmitter (USART) is a fast
and flexible serial communication module. The USART supports full-duplex communication and
asynchronous and synchronous operation. The USART can be configured to operate in SPI
master mode and used for SPI communication.

Communication is frame based, and the frame format can be customized to support a wide
range of standards. The USART is buffered in both directions, enabling continued data transmis-
sion without any delay between frames. Separate interrupts for receive and transmit complete
enable fully interrupt driven communication. Frame error and buffer overflow are detected in
hardware and indicated with separate status flags. Even or odd parity generation and parity
check can also be enabled.

A block diagram of the USART is shown in Figure 23-1 on page 294. The main functional blocks
are the clock generator, the transmitter, and the receiver, which are indicated in dashed boxes.
293
8331B–AVR–03/12

Atmel AVR XMEGA AU
Figure 23-1. USART block diagram.

The clock generator includes a fractional baud rate generator that is able to generate a wide
range of USART baud rates from any system clock frequencies. This removes the need to use
an external crystal oscillator with a specific frequency to achieve a required baud rate. It also
supports external clock input in synchronous slave operation.

The transmitter consists of a single write buffer (DATA), a shift register, and a parity generator.
The write buffer allows continuous data transmission without any delay between frames.

The receiver consists of a two-level receive buffer (DATA) and a shift register. Data and clock
recovery units ensure robust synchronization and noise filtering during asynchronous data
reception. It includes frame error, buffer overflow, and parity error detection.

When the USART is set in master SPI mode, all USART-specific logic is disabled, leaving the
transmit and receive buffers, shift registers, and baud rate generator enabled. Pin control and
interrupt generation are identical in both modes. The registers are used in both modes, but their
functionality differs for some control settings.

An IRCOM module can be enabled for one USART to support IrDA 1.4 physical compliant pulse
modulation and demodulation for baud rates up to 115.2kbps. For details, refer to ”IRCOM - IR
Communication Module” on page 316.

PARITY
GENERATOR

BSEL [H:L]

DATA (Transmit)

CTRLA CTRLB CTRLC

BAUD RATE GENERATOR
 FRACTIONAL DIVIDE

TRANSMIT SHIFT REGISTER

RECEIVE SHIFT REGISTER RxD

TxDPIN
CONTROL

DATA (Receive)

PIN
CONTROL

XCK

DATA
RECOVERY

CLOCK
RECOVERY

PIN
CONTROL

TX
CONTROL

RX
CONTROL

PARITY
CHECKER

D
A

TA
 B

U
S

OSC

SYNC LOGIC

Clock Generator

Transmitter

Receiver
294
8331B–AVR–03/12

Atmel AVR XMEGA AU
23.3 Clock Generation
The clock used for baud rate generation and for shifting and sampling data bits is generated
internally by the fractional baud rate generator or externally from the transfer clock (XCK) pin.
Five modes of clock generation are supported: normal and double-speed asynchronous mode,
master and slave synchronous mode, and master SPI mode.

Figure 23-2. Clock generation logic, block diagram.

23.3.1 Internal Clock Generation - The Fractional Baud Rate Generator
The fractional baud rate generator is used for internal clock generation for asynchronous modes,
synchronous master mode, and master SPI mode operation. The output frequency generated
(fBAUD) is determined by the period setting (BSEL), an optional scale setting (BSCALE), and the
peripheral clock frequency (fPER). Table 23-1 on page 296 contains equations for calculating the
baud rate (in bits per second) and for calculating the BSEL value for each mode of operation. It
also shows the maximum baud rate versus peripheral clock frequency. BSEL can be set to any
value between 0 and 4095. BSCALE can be set to any value between -7 and +7, and increases
or decreases the baud rate slightly to provide the fractional baud rate scaling of the baud rate
generator.

When BSEL is 0, BSCALE must also be 0. Also, the value 2ABS(BSCALE) must at most be one half
of the minimum number of clock cycles a frame requires. For more details, see ”Fractional Baud
Rate Generation” on page 304.

Baud Rate
Generator /2

BSEL

/4 /2

Sync
Register

fOSC

XCK
Pin

txclk

CLK2X

UMSEL [1]

DDR_XCK

0

1

0

1

xcki

xcko

DDR_XCK
rxclk

0

1

1

0
Edge

Detector

PORT_INV

fBAUD
295
8331B–AVR–03/12

Atmel AVR XMEGA AU
Note: 1. The baud rate is defined to be the transfer rate in bits per second (bps)

For BSEL=0, all baud rates must be achieved by changing BSEL instead of setting BSCALE:

BSEL = (2 BSCALE-1)

23.3.2 External Clock
External clock (XCK) is used in synchronous slave mode operation. The XCK clock input is sam-
pled on the peripheral clock frequency (fPER), and the maximum XCK clock frequency (fXCK)is
limited by the following:

For each high and low period, XCK clock cycles must be sampled twice by the peripheral clock.
If the XCK clock has jitter, or if the high/low period duty cycle is not 50/50, the maximum XCK
clock speed must be reduced or the peripheral clock must be increased accordingly.

Table 23-1. Equations for calculating baud rate register settings.

Operating Mode Conditions Baud Rate(1) Calculation BSEL Value Calculation

Asynchronous normal
speed mode (CLK2X = 0)

BSCALE ≥ 0

BSCALE < 0

Asynchronous double
speed mode (CLK2X = 1)

BSCALE ≥ 0

BSCALE < 0

Synchronous and master
SPI mode

fBAUD
fPER
16

-----------≤
fBAUD

fPER

2BSCALE 16(⋅ BSEL 1)+
--= BSEL

fPER

2BSCALE 16⋅ fBAUD

-- 1–=

fBAUD
fPER
16

-----------≤
fBAUD

fPER

16((2BSCALE BSEL)⋅ 1)+
---= BSEL 1

2BSCALE

fPER
16fBAUD
---------------------- 1–⎝ ⎠

⎛ ⎞=

fBAUD
fPER

8
-----------≤

fBAUD
fPER

2BSCALE 8 BSEL 1+()⋅ ⋅
---= BSEL

fPER

2BSCALE 8⋅ fBAUD

--- 1–=

fBAUD
fPER

8
-----------≤

fBAUD
fPER

8((2BSCALE BSEL)⋅ 1)+
--= BSEL 1

2BSCALE

fPER
8fBAUD
------------------- 1–⎝ ⎠

⎛ ⎞=

fBAUD
fPER

2
-----------< fBAUD

fPER
2 BSEL 1+()⋅
-------------------------------------= BSEL

fPER
2fBAUD
------------------- 1–=

BSCALE BSEL BSCALE BSEL

1 0 → 0 1

2 0 → 0 3

3 0 → 0 7

4 0 → 0 15

5 0 → 0 31

6 0 → 0 63

7 0 → 0 127

fXCK
fPER

4
-----------<
296
8331B–AVR–03/12

Atmel AVR XMEGA AU
23.3.3 Double Speed Operation
Double speed operation allows for higher baud rates under asynchronous operation with lower
peripheral clock frequencies. When this is enabled, the baud rate for a given asynchronous baud
rate setting shown in Table 23-1 on page 296 will be doubled. In this mode, the receiver will use
half the number of samples (reduced from 16 to 8) for data sampling and clock recovery. Due to
the reduced sampling, a more accurate baud rate setting and peripheral clock are required. See
”Asynchronous Data Reception” on page 301 for more details.

23.3.4 Synchronous Clock Operation
When synchronous mode is used, the XCK pin controls whether the transmission clock is input
(slave mode) or output (master mode). The corresponding port pin must be set to output for
master mode or to input for slave mode. The normal port operation of the XCK pin will be over-
ridden. The dependency between the clock edges and data sampling or data change is the
same. Data input (on RxD) is sampled at the XCK clock edge which is opposite the edge where
data output (TxD) is changed.

Figure 23-3. Synchronous mode XCK timing.

Using the inverted I/O (INVEN) setting for the corresponding XCK port pin, the XCK clock edges
used for data sampling and data change can be selected. If inverted I/O is disabled (INVEN=0),
data will be changed at the rising XCK clock edge and sampled at the falling XCK clock edge. If
inverted I/O is enabled (INVEN=1), data will be changed at the falling XCK clock edge and sam-
pled at the rising XCK clock edge. For more details, see ”I/O Ports” on page 143.

23.3.5 Master SPI Mode Clock Generation
For master SPI mode operation, only internal clock generation is supported. This is identical to
the USART synchronous master mode, and the baud rate or BSEL setting is calculated using
the same equations (see Table 23-1 on page 296).

There are four combinations of the SPI clock (SCK) phase and polarity with respect to the serial
data, and these are determined by the clock phase (UCPHA) control bit and the inverted I/O pin
(INVEN) settings. The data transfer timing diagrams are shown in Figure 23-4 on page 298.
Data bits are shifted out and latched in on opposite edges of the XCK signal, ensuring sufficient
time for data signals to stabilize. The UCPHA and INVEN settings are summarized in Table 23-2
on page 298. Changing the setting of any of these bits during transmission will corrupt both the
receiver and transmitter

RxD / TxD

XCK

RxD / TxD

XCKUCPOL = 0

UCPOL = 1

Sample

Sample
297
8331B–AVR–03/12

Atmel AVR XMEGA AU
The leading edge is the first clock edge of a clock cycle. The trailing edge is the last clock edge
of a clock cycle.

Figure 23-4. UCPHA and INVEN data transfer timing diagrams.

23.4 Frame Formats
Data transfer is frame based, where a serial frame consists of one character of data bits with
synchronization bits (start and stop bits) and an optional parity bit for error checking. Note that
this does not apply to master SPI operation (See ”SPI Frame Formats” on page 299). The
USART accepts all combinations of the following as valid frame formats:

• 1 start bit

• 5, 6, 7, 8, or 9 data bits

• no, even, or odd parity bit

• 1 or 2 stop bits

A frame starts with the start bit, followed by all the data bits (least-significant bit first and most-
significant bit last). If enabled, the parity bit is inserted after the data bits, before the first stop bit.
One frame can be directly followed by a start bit and a new frame, or the communication line can
return to the idle (high) state. Figure 23-5 on page 299 illustrates the possible combinations of
frame formats. Bits inside brackets are optional.

Table 23-2. INVEN and UCPHA functionality.

SPI Mode INVEN UCPHA Leading Edge Trailing Edge

0 0 0 Rising, sample Falling, setup

1 0 1 Rising, setup Falling, sample

2 1 0 Falling, sample Rising, setup

3 1 1 Falling, setup Rising, sample

XCK

Data setup (TXD)

Data sample (RXD)

XCK

Data setup (TXD)

Data sample (RXD)

XCK

Data setup (TXD)

Data sample (RXD)

XCK

Data setup (TXD)

Data sample (RXD)

UCPOL=0 UCPOL=1

U
C

P
H

A
=0

U
C

P
H

A
=1
298
8331B–AVR–03/12

Atmel AVR XMEGA AU
Figure 23-5. Frame formats.

23.4.1 Parity Bit Calculation
Even or odd parity can be selected for error checking. If even parity is selected, the parity bit is
set to one if the number of logical one data bits is odd (making the total number of ones even). If
odd parity is selected, the parity bit is set to one if the number of logical one data bits is even
(making the total number of ones odd).

23.4.2 SPI Frame Formats
The serial frame in SPI mode is defined to be one character of eight data bits. The USART in
master SPI mode has two selectable frame formats:

• 8-bit data, msb first

• 8-bit data, lsb first

After a complete, 8-bit frame is transmitted, a new frame can directly follow it, or the communica-
tion line can return to the idle (high) state.

23.5 USART Initialization
USART initialization should use the following sequence:

1. Set the TxD pin value high, and optionally set the XCK pin low.

2. Set the TxD and optionally the XCK pin as output.

3. Set the baud rate and frame format.

4. Set the mode of operation (enables XCK pin output in synchronous mode).

5. Enable the transmitter or the receiver, depending on the usage.

For interrupt-driven USART operation, global interrupts should be disabled during the
initialization.

Before doing a re-initialization with a changed baud rate or frame format, be sure that there are
no ongoing transmissions while the registers are changed.

23.6 Data Transmission - The USART Transmitter
When the transmitter has been enabled, the normal port operation of the TxD pin is overridden
by the USART and given the function as the transmitter's serial output. The direction of the pin
must be set as output using the direction register for the corresponding port. For details on port
pin control and output configuration, refer to ”I/O Ports” on page 143.

St Start bit, always low.
(n) Data bits (0 to 8).

P Parity bit, may be odd or even.

Sp Stop bit, always high.
IDLE No transfers on the communication line (RxD or TxD). The IDLE state is always high.

10 2 3 4 [5] [6] [7] [8] [P]St Sp1 [Sp2] (St / IDLE)(IDLE)

FRAME
299
8331B–AVR–03/12

Atmel AVR XMEGA AU
23.6.1 Sending Frames
A data transmission is initiated by loading the transmit buffer (DATA) with the data to be sent.
The data in the transmit buffer are moved to the shift register when the shift register is empty
and ready to send a new frame. The shift register is loaded if it is in idle state (no ongoing trans-
mission) or immediately after the last stop bit of the previous frame is transmitted. When the shift
register is loaded with data, it will transfer one complete frame.

The transmit complete interrupt flag (TXCIF) is set and the optional interrupt is generated when
the entire frame in the shift register has been shifted out and there are no new data present in
the transmit buffer.

The transmit data register (DATA) can only be written when the data register empty flag (DREIF)
is set, indicating that the register is empty and ready for new data.

When using frames with fewer than eight bits, the most-significant bits written to DATA are
ignored. If 9-bit characters are used, the ninth bit must be written to the TXB8 bit before the low
byte of the character is written to DATA.

23.6.2 Disabling the Transmitter
A disabling of the transmitter will not become effective until ongoing and pending transmissions
are completed; i.e., when the transmit shift register and transmit buffer register do not contain
data to be transmitted. When the transmitter is disabled, it will no longer override the TxDn pin,
and the pin direction is set as input automatically by hardware, even if it was configured as out-
put by the user.

23.7 Data Reception - The USART Receiver
When the receiver is enabled, the RxD pin functions as the receiver's serial input. The direction
of the pin must be set as input, which is the default pin setting.

23.7.1 Receiving Frames
The receiver starts data reception when it detects a valid start bit. Each bit that follows the start
bit will be sampled at the baud rate or XCK clock and shifted into the receive shift register until
the first stop bit of a frame is received. A second stop bit will be ignored by the receiver. When
the first stop bit is received and a complete serial frame is present in the receive shift register,
the contents of the shift register will be moved into the receive buffer. The receive complete
interrupt flag (RXCIF) is set, and the optional interrupt is generated.

The receiver buffer can be read by reading the data register (DATA) location. DATA should not
be read unless the receive complete interrupt flag is set. When using frames with fewer than
eight bits, the unused most-significant bits are read as zero. If 9-bit characters are used, the
ninth bit must be read from the RXB8 bit before the low byte of the character is read from DATA.

23.7.2 Receiver Error Flags
The USART receiver has three error flags. The frame error (FERR), buffer overflow (BUFOVF)
and parity error (PERR) flags are accessible from the status register. The error flags are located
in the receive FIFO buffer together with their corresponding frame. Due to the buffering of the
error flags, the status register must be read before the receive buffer (DATA), since reading the
DATA location changes the FIFO buffer.
300
8331B–AVR–03/12

Atmel AVR XMEGA AU
23.7.3 Parity Checker
When enabled, the parity checker calculates the parity of the data bits in incoming frames and
compares the result with the parity bit of the corresponding frame. If a parity error is detected,
the parity error flag is set.

23.7.4 Disabling the Receiver
A disabling of the receiver will be immediate. The receiver buffer will be flushed, and data from
ongoing receptions will be lost.

23.7.5 Flushing the Receive Buffer
If the receive buffer has to be flushed during normal operation, read the DATA location until the
receive complete interrupt flag is cleared.

23.8 Asynchronous Data Reception
The USART includes a clock recovery and a data recovery unit for handling asynchronous data
reception. The clock recovery unit is used for synchronizing the incoming asynchronous serial
frames at the RxD pin to the internally generated baud rate clock. It samples and low-pass filters
each incoming bit, thereby improving the noise immunity of the receiver. The asynchronous
reception operational range depends on the accuracy of the internal baud rate clock, the rate of
the incoming frames, and the frame size in number of bits.

23.8.1 Asynchronous Clock Recovery
The clock recovery unit synchronizes the internal clock to the incoming serial frames. Figure 23-
6 on page 301 illustrates the sampling process for the start bit of an incoming frame. The sample
rate is 16 times the baud rate for normal mode, and eight times the baud rate for double speed
mode. The horizontal arrows illustrate the synchronization variation due to the sampling pro-
cess. Note the larger time variation when using the double speed mode of operation. Samples
denoted as zero are samples done when the RxD line is idle; i.e., when there is no communica-
tion activity.

Figure 23-6. Start bit sampling.

When the clock recovery logic detects a high (idle) to low (start) transition on the RxD line, the
start bit detection sequence is initiated. Sample 1 denotes the first zero-sample, as shown in the
figure. The clock recovery logic then uses samples 8, 9, and 10 for normal mode and samples 4,
5, and 6 for double speed mode to decide if a valid start bit is received. If two or three samples
have a low level, the start bit is accepted. The clock recovery unit is synchronized, and the data
recovery can begin. If two or three samples have a high level, the start bit is rejected as a noise
spike, and the receiver looks for the next high-to-low transition. The process is repeated for each
start bit.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 2

STARTIDLE

00

BIT 0

3

1 2 3 4 5 6 7 8 1 20

RxD

Sample
(U2X = 0)

Sample
(U2X = 1)
301
8331B–AVR–03/12

Atmel AVR XMEGA AU
23.8.2 Asynchronous Data Recovery
The data recovery unit uses sixteen samples in normal mode and eight samples in double speed
mode for each bit. Figure 23-7 on page 302 shows the sampling process of data and parity bits.

Figure 23-7. Sampling of data and parity bits.

As for start bit detection, an identical majority voting technique is used on the three center sam-
ples for deciding of the logic level of the received bit. The process is repeated for each bit until a
complete frame is received. It includes the first stop bit, but excludes additional ones. If the sam-
pled stop bit is a 0 value, the frame error (FERR) flag will be set.

Figure 23-8 on page 302 shows the sampling of the stop bit in relation to the earliest possible
beginning of the next frame's start bit.

Figure 23-8. Stop bit and next start bit sampling.

A new high-to-low transition indicating the start bit of a new frame can come right after the last of
the bits used for majority voting. For normal speed mode, the first low level sample can be at the
point marked (A) in Stop Bit Sampling and Next Start Bit Sampling. For double speed mode, the
first low level must be delayed to point (B). Point (C) marks a stop bit of full length at nominal
baud rate. The early start bit detection influences the operational range of the receiver.

23.8.3 Asynchronous Operational Range
The operational range of the receiver is dependent on the mismatch between the received bit
rate and the internally generated baud rate. If an external transmitter is sending using bit rates
that are too fast or too slow, or if the internally generated baud rate of the receiver does not
match the external source’s base frequency, the receiver will not be able to synchronize the
frames to the start bit.

The following equations can be used to calculate the ratio of the incoming data rate and internal
receiver baud rate.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1

BIT n

1 2 3 4 5 6 7 8 1

RxD

Sample
(CLK2X = 0)

Sample
(CLK2X = 1)

1 2 3 4 5 6 7 8 9 10 0/1 0/1 0/1

STOP 1

1 2 3 4 5 6 0/1

RxD

Sample
(CLK2X = 0)

Sample
(CLK2X = 1)

(A) (B) (C)
302
8331B–AVR–03/12

Atmel AVR XMEGA AU
Table 23-3 and Table 23-4 on page 303 list the maximum receiver baud rate error that can be
tolerated. Normal speed mode has higher tolerance of baud rate variations.

The recommendations for the maximum receiver baud rate error assume that the receiver and
transmitter equally divide the maximum total error.

D Sum of character size and parity size (D = 5 to 10 bits).

S Samples per bit. S = 16 for normal speed mode and S = 8 for double speed mode.

SF First sample number used for majority voting. SF = 8 for normal speed mode and SF = 4 for dou-
ble speed mode.

SM Middle sample number used for majority voting. SM = 9 for normal speed mode and SM = 5 for
double speed mode.

Rslow The ratio of the slowest incoming data rate that can be accepted in relation to the receiver baud
rate.

Rfast The ratio of the fastest incoming data rate that can be accepted in relation to the receiver baud
rate.

Table 23-3. Recommended maximum receiver baud rate error for normal speed mode

D
#(Data + Parity Bit) Rslow [%] Rfast [%] Max Total Error [%]

Recommended Max
Receiver Error [%]

5 93.20 106.67 +6.67/-6.80 ± 3.0

6 94.12 105.79 +5.79/-5.88 ± 2.5

7 94.81 105.11 +5.11/-5.19 ± 2.0

8 95.36 104.58 +4.58/-4.54 ± 2.0

9 95.81 104.14 +4.14/-4.19 ± 1.5

10 96.17 103.78 +3.78/-3.83 ± 1.5

Table 23-4. Recommended maximum receiver baud rate error for double speed mode

D
#(Data + Parity Bit) Rslow [%] Rfast [%] Max Total Error [%]

Recommended Max
Receiver Error [%]

5 94.12 105.66 +5.66/-5.88 ± 2.5

6 94.92 104.92 +4.92/-5.08 ± 2.0

7 95.52 104.35 +4.35/-4.48 ± 1.5

8 96.00 103.90 +3.90/-4.00 ± 1.5

9 96.39 103.53 +3.53/-3.61 ± 1.5

10 96.70 103.23 +3.23/-3.30 ± 1.0

Rslow
D 1+()S

S 1– D S⋅ SF+ +
---= Rfast

D 2+()S
D 1+()S SM+

-----------------------------------=
303
8331B–AVR–03/12

Atmel AVR XMEGA AU
23.9 Fractional Baud Rate Generation
Fractional baud rate generation is possible for asynchronous operation due to the relatively high
number of clock cycles for each frame. Each bit is sampled sixteen times, but only the three mid-
dle samples are of importance. The total number of samples for one frame is also relatively high.
Given a 1-start, 8-data, no-parity, and 1-stop-bit frame format, and assuming that normal speed
mode is used, the total number of samples for a frame is (1+8+1)×16 or 160. As stated earlier,
the UART can tolerate some variation in clock cycles for each sample. The critical factor is the
time from the falling edge of the start bit (i.e., the clock synchronization) until the last bit's (i.e.,
the first stop bit’s) value is recovered.

Standard baud rate generators have the unwanted property of having large frequency steps
between high baud rate settings. The worst case is found between the BSEL values 0x000 and
0x001. Going from a BSEL value of 0x000, which has a 10-bit frame of 160 clock cycles, to a
BSEL value of 0x001, with 320 clock cycles, gives a 50% change in frequency. Ideally, the step
size should be small even between the fastest baud rates. This is where the advantage of the
fractional baud rate generator emerges.

In principle, the fractional baud rate generator works by doing uneven counting and then distrib-
uting the error evenly over the entire frame. A typical count sequence for an ordinary baud rate
generator is:

2, 1, 0, 2, 1, 0, 2, 1, 0, 2, …

which has an even period time. A baud rate clock ticks each time the counter reaches zero, and
a sample of the signal received on RxD is taken for every 16th baud rate clock tick.

For the fractional baud rate generator, the count sequence can have an uneven period:

2, 1, 0, 2, 1-1, 0, 2, 1, 0, 2, 1-1, 0, ...

In this example, an extra cycle is added to every second baud clock. This gives a baud rate
clock tick jitter, but the average period has been increased by a fraction of 0.5 clock cycles.

Figure 23-9 on page 305 shows an example of how BSEL and BSCALE can be used to achieve
baud rates in between what is possible by just changing BSEL.

The impact of fractional baud rate generation is that the step size between baud rate settings
has been reduced. Given a scale factor of -1, the worst-case step then becomes from 160 to 240
clock cycles per 10-bit frame, compared to the previous step of from 160 to 320. A higher nega-
tive scale factor gives even finer granularity. There is a limit,however, to how high the scale
factor can be. The value 2|BSCALE| must be at most half the minimum number of clock cycles of a
frame. For instance, for 10-bit frames, the minimum number of clock cycles is 160. This means
that the highest applicable scale factor is -6 (2I-6I = 64 < (160/2) = 80)

For higher BSEL settings, the scale factor can be increased.

Table 23-5 on page 306 shows BSEL and BSCALE settings when using the internal oscillators
to generate the most commonly used baud rates for asynchronous operation and how reducing
the BSCALE can be used to reduce the baud rate error even further.
304
8331B–AVR–03/12

Atmel AVR XMEGA AU
Figure 23-9. Fractional baud rate example.

BSEL=0
BSCALE=0
fBAUD=fPER/8

clkBAUD8

clkBAUD8

BSEL=3
BSCALE=-6
fBAUD=fPER/8.375

clkBAUD8

BSEL=3
BSCALE=-4
fBAUD=fPER/9.5

Extra clock cycle added
305
8331B–AVR–03/12

Atmel AVR XMEGA AU
Table 23-5. USART Baud rate.

Baud fOSC = 32.0000MHz

rate
(bps)

CLK2X = 0 CLK2X = 1

BSEL BSCALE Error [%] BSEL BSCALE Error [%]

2400 12 6 0.2 12 7 0.2

4800 12 5 0.2 12 6 0.2

9600 12 4 0.2 12 5 0.2

14.4k
34 2 0.8 34 3 0.8

138 0 -0.1 138 1 -0.1

19.2k 12 3 0.2 12 4 0.2

28.8k
34 1 -0.8 34 2 -0.8

137 -1 -0.1 138 0 -0.1

38.4k 12 2 0.2 12 3 0.2

57.6k
34 0 -0.8 34 1 -0.8

135 -2 -0.1 137 -1 -0.1

76.8k 12 1 0.2 12 2 0.2

115.2k
33 -1 -0.8 34 0 -0.8

131 -3 -0.1 135 -2 -0.1

230.4k
31 -2 -0.8 33 -1 -0.8

123 -4 -0.1 131 -3 -0.1

460.8k
27 -3 -0.8 31 -2 -0.8

107 -5 -0.1 123 -4 -0.1

921.6k
19 -4 -0.8 27 -3 -0.8

75 -6 -0.1 107 -5 -0.1

1.382M
7 -4 0.6 15 -3 0.6

57 -7 0.1 121 -6 0.1

1.843M
3 -5 -0.8 19 -4 -0.8

11 -7 -0.1 75 -6 -0.1

2.00M 0 0 0.0 1 0 0.0

2.304M – – –
3 -2 -0.8

47 -6 -0.1

2.5M – – –
19 -4 0.4

77 -7 -0.1

3.0M – – –
11 -5 -0.8

43 -7 -0.2

4.0M – – – 0 0 0.0

Max 2.0Mbps 4.0Mbps
306
8331B–AVR–03/12

Atmel AVR XMEGA AU
23.10 USART in Master SPI Mode
Using the USART in master SPI mode requires the transmitter to be enabled. The receiver can
optionally be enabled to serve as the serial input. The XCK pin will be used as the transfer clock.

As for the USART, a data transfer is initiated by writing to the DATA register. This is the case for
both sending and receiving data, since the transmitter controls the transfer clock. The data writ-
ten to DATA are moved from the transmit buffer to the shift register when the shift register is
ready to send a new frame.

The transmitter and receiver interrupt flags and corresponding USART interrupts used in master
SPI mode are identical in function to their use in normal USART operation. The receiver error
status flags are not in use and are always read as zero.

Disabling of the USART transmitter or receiver in master SPI mode is identical to their disabling
in normal USART operation.

23.11 USART SPI vs. SPI
The USART in master SPI mode is fully compatible with the standalone SPI module in that:

• Timing diagrams are the same

• UCPHA bit functionality is identical to that of the SPI CPHA bit

• UDORD bit functionality is identical to that of the SPI DORD bit

When the USART is set in master SPI mode, configuration and use are in some cases different
from those of the standalone SPI module. In addition, the following differences exist:

• The USART transmitter in master SPI mode includes buffering, but the SPI module has no
transmit buffer

• The USART receiver in master SPI mode includes an additional buffer level

• The USART in master SPI mode does not include the SPI write collision feature

• The USART in master SPI mode does not include the SPI double speed mode feature, but
this can be achieved by configuring the baud rate generator accordingly

• Interrupt timing is not compatible

• Pin control differs due to the master-only operation of the USART in SPI master mode

A comparison of the USART in master SPI mode and the SPI pins is shown Table 23-6.

23.12 Multiprocessor Communication Mode
The multiprocessor communication mode effectively reduces the number of incoming frames
that have to be handled by the receiver in a system with multiple microcontrollers communicat-
ing via the same serial bus. In this mode, a dedicated bit in the frames is used to indicate
whether the frame is an address or data frame type.

Table 23-6. Comparison of USART in master SPI mode and SPI pins.

USART SPI Comment

TxD MOSI Master out only

RxD MISO Master in only

XCK SCK Functionally identical

N/A SS Not supported by USART in master SPI mode
307
8331B–AVR–03/12

Atmel AVR XMEGA AU
If the receiver is set up to receive frames that contain five to eight data bits, the first stop bit is
used to indicate the frame type. If the receiver is set up for frames with nine data bits, the ninth
bit is used. When the frame type bit is one, the frame contains an address. When the frame type
bit is zero, the frame is a data frame. If 5-bit to 8-bit character frames are used, the transmitter
must be set to use two stop bits, since the first stop bit is used for indicating the frame type.

If a particular slave MCU has been addressed, it will receive the following data frames as usual,
while the other slave MCUs will ignore the frames until another address frame is received.

23.12.1 Using Multiprocessor Communication Mode
The following procedure should be used to exchange data in multiprocessor communication
mode (MPCM):

1. All slave MCUs are in multiprocessor communication mode.

2. The master MCU sends an address frame, and all slaves receive and read this frame.

3. Each slave MCU determines if it has been selected.

4. The addressed MCU will disable MPCM and receive all data frames. The other slave
MCUs will ignore the data frames.

5. When the addressed MCU has received the last data frame, it must enable MPCM
again and wait for a new address frame from the master.

The process then repeats from step 2.

Using any of the 5-bit to 8-bit character frame formats is impractical, as the receiver must
change between using n and n+1 character frame formats. This makes full-duplex operation dif-
ficult, since the transmitter and receiver must use the same character size setting.

23.13 IRCOM Mode of Operation
IRCOM mode can be enabled to use the IRCOM module with the USART. This enables IrDA 1.4
compliant modulation and demodulation for baud rates up to 115.2kbps. When IRCOM mode is
enabled, double speed mode cannot be used for the USART.

For devices with more than one USART, IRCOM mode can be enabled for only one USART at a
time. For details, refer to ”IRCOM - IR Communication Module” on page 316.

23.14 DMA Support
DMA support is available on UART, USRT, and master SPI mode peripherals. For details on dif-
ferent USART DMA transfer triggers, refer to ”Transfer Triggers” on page 56.
308
8331B–AVR–03/12

Atmel AVR XMEGA AU
23.15 Register Description

23.15.1 DATA – Data register

The USART transmit data buffer register (TXB) and USART receive data buffer register (RXB)
share the same I/O address and is referred to as USART data register (DATA). The TXB register
is the destination for data written to the DATA register location. Reading the DATA register loca-
tion returns the contents of the RXB register.

For 5-bit, 6-bit, or 7-bit characters, the upper unused bits will be ignored by the transmitter and
set to zero by the receiver.

The transmit buffer can be written only when DREIF in the STATUS register is set. Data written
to the DATA register when DREIF is not set will be ignored by the USART transmitter. When
data are written to the transmit buffer and the transmitter is enabled, the transmitter will load the
data into the transmit shift register when the shift register is empty. The data are then transmit-
ted on the TxD pin.

The receive buffer consists of a two-level FIFO. Always read STATUS before DATA in order to
get the correct status of the receive buffer.

23.15.2 STATUS – Status register

• Bit 7 – RXCIF: Receive Complete Interrupt Flag
This flag is set when there are unread data in the receive buffer and cleared when the receive
buffer is empty (i.e., does not contain any unread data). When the receiver is disabled, the
receive buffer will be flushed, and consequently RXCIF will become zero.

When interrupt-driven data reception is used, the receive complete interrupt routine must read
the received data from DATA in order to clear RXCIF. If not, a new interrupt will occur directly
after the return from the current interrupt. This flag can also be cleared by writing a one to its bit
location.

• Bit 6 – TXCIF: Transmit Complete Interrupt Flag
This flag is set when the entire frame in the transmit shift register has been shifted out and there
are no new data in the transmit buffer (DATA). TXCIF is automatically cleared when the transmit
complete interrupt vector is executed. The flag can also be cleared by writing a one to its bit
location.

Bit 7 6 5 4 3 2 1 0

+0x00
RXB[[7:0]

TXB[[7:0]

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x01 RXCIF TXCIF DREIF FERR BUFOVF PERR – RXB8 STATUS

Read/Write R R/W R R R R R R/W

Initial Value 0 0 1 0 0 0 0 0
309
8331B–AVR–03/12

Atmel AVR XMEGA AU
• Bit 5 – DREIF: Data Register Empty Flag
This flag indicates whether the transmit buffer (DATA) is ready to receive new data. The flag is
one when the transmit buffer is empty and zero when the transmit buffer contains data to be
transmitted that has not yet been moved into the shift register. DREIF is set after a reset to indi-
cate that the transmitter is ready. Always write this bit to zero when writing the STATUS register.

DREIF is cleared by writing DATA. When interrupt-driven data transmission is used, the data
register empty interrupt routine must either write new data to DATA in order to clear DREIF or
disable the data register empty interrupt. If not, a new interrupt will occur directly after the return
from the current interrupt.

• Bit 4 – FERR: Frame Error
The FERR flag indicates the state of the first stop bit of the next readable frame stored in the
receive buffer. The bit is set if the received character had a frame error, i.e., the first stop bit was
zero, and cleared when the stop bit of the received data is one. This bit is valid until the receive
buffer (DATA) is read. FERR is not affected by setting the number of stop bits used, as it always
uses only the first stop bit. Always write this bit location to zero when writing the STATUS
register.

This flag is not used in master SPI mode operation.

• Bit 3 – BUFOVF: Buffer Overflow
This flag indicates data loss due to a receiver buffer full condition. This flag is set if a buffer over-
flow condition is detected. A buffer overflow occurs when the receive buffer is full (two
characters) with a new character waiting in the receive shift register and a new start bit is
detected. This flag is valid until the receive buffer (DATA) is read. Always write this bit location to
zero when writing the STATUS register.

This flag is not used in master SPI mode operation.

• Bit 2 – PERR: Parity Error
If parity checking is enabled and the next character in the receive buffer has a parity error, this
flag is set. If parity check is not enabled, this flag will always be read as zero. This bit is valid until
the receive buffer (DATA) is read. Always write this bit location to zero when writing the STATUS
register. For details on parity calculation, refer to ”Parity Bit Calculation” on page 299.

This flag is not used in master SPI mode operation.

• Bit 1 – Reserved
This bit is unused and reserved for future use. For compatibility with future devices, always write
this bit to zero when this register is written.

• Bit 0 – RXB8: Receive Bit 8
RXB8 is the ninth data bit of the received character when operating with serial frames with nine
data bits. When used, this bit must be read before reading the low bits from DATA.

This bit is unused in master SPI mode operation.
310
8331B–AVR–03/12

Atmel AVR XMEGA AU
23.15.3 CTRLA – Control register A

• Bit 7:6 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

• Bit 5:4 – RXCINTLVL[1:0]: Receive Complete Interrupt Level
These bits enable the receive complete interrupt and select the interrupt level, as described in
”Interrupts and Programmable Multilevel Interrupt Controller” on page 134. The enabled interrupt
will be triggered when the RXCIF flag in the STATUS register is set.

• Bit 3:2 – TXCINTLVL[1:0]: Transmit Complete Interrupt Level
These bits enable the transmit complete interrupt and select the interrupt level, as described in
”Interrupts and Programmable Multilevel Interrupt Controller” on page 134. The enabled interrupt
will be triggered when the TXCIF flag in the STATUS register is set.

• Bit 1:0 – DREINTLVL[1:0]: Data Register Empty Interrupt Level
These bits enable the data register empty interrupt and select the interrupt level, as described in
”Interrupts and Programmable Multilevel Interrupt Controller” on page 134. The enabled interrupt
will be triggered when the DREIF flag in the STATUS register is set.

23.15.4 CTRLB – Control register B

• Bit 7:5 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

• Bit 4 – RXEN: Receiver Enable
Setting this bit enables the USART receiver. The receiver will override normal port operation for
the RxD pin, when enabled. Disabling the receiver will flush the receive buffer, invalidating the
FERR, BUFOVF, and PERR flags.

• Bit 3 – TXEN: Transmitter Enable
Setting this bit enables the USART transmitter. The transmitter will override normal port opera-
tion for the TxD pin, when enabled. Disabling the transmitter (writing TXEN to zero) will not
become effective until ongoing and pending transmissions are completed; i.e., when the transmit

Bit 7 6 5 4 3 2 1 0

+0x03 – – RXCINTLVL[1:0] TXCINTLVL[1:0] DREINTLVL[1:0] CTRLA

Read/Write R R R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x04 – – – RXEN TXEN CLK2X MPCM TXB8 CTRLB

Read/Write R R R R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
311
8331B–AVR–03/12

Atmel AVR XMEGA AU
shift register and transmit buffer register do not contain data to be transmitted. When disabled,
the transmitter will no longer override the TxD port.

• Bit 2 – CLK2X: Double Transmission Speed
Setting this bit will reduce the divisor of the baud rate divider from16 to 8, effectively doubling the
transfer rate for asynchronous communication modes. For synchronous operation, this bit has
no effect and should always be written to zero. This bit must be zero when the USART commu-
nication mode is configured to IRCOM.

This bit is unused in master SPI mode operation.

• Bit 1 – MPCM: Multiprocessor Communication Mode
This bit enables the multiprocessor communication mode. When the MPCM bit is written to one,
the USART receiver ignores all the incoming frames that do not contain address information.
The transmitter is unaffected by the MPCM setting. For more detailed information, see ”Multipro-
cessor Communication Mode” on page 307.

This bit is unused in master SPI mode operation.

• Bit 0 – TXB8: Transmit Bit 8
TXB8 is the ninth data bit in the character to be transmitted when operating with serial frames
with nine data bits. When used, this bit must be written before writing the low bits to DATA.

This bit is unused in master SPI mode operation.

23.15.5 CTRLC – Control register C

Note: 1. Master SPI mode

• Bits 7:6 – CMODE[1:0]: Communication Mode
These bits select the mode of operation of the USART as shown in Table 23-7.

Notes: 1. See ”IRCOM - IR Communication Module” on page 316 for full description on using IRCOM
mode.

2. See ”USART in Master SPI Mode” on page 307 for full description of the master SPI
operation.

Bit 7 6 5 4 3 2 1 0

+0x05 CMODE[1:0] PMODE[1:0] SBMODE CHSIZE[2:0]

+0x05(1) CMODE[1:0] – – – UDORD UCPHA –

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 1 1 0

Table 23-7. CMODE bit settings.

CMODE[1:0] Group Configuration Mode

00 ASYNCHRONOUS Asynchronous USART

01 SYNCHRONOUS Synchronous USART

10 IRCOM IRCOM(1)

11 MSPI Master SPI(2)
312
8331B–AVR–03/12

Atmel AVR XMEGA AU
• Bits 5:4 – PMODE[1:0]: Parity Mode
These bits enable and set the type of parity generation according to Table 23-8 on page 313.
When enabled, the transmitter will automatically generate and send the parity of the transmitted
data bits within each frame. The receiver will generate a parity value for the incoming data and
compare it to the PMODE setting, and if a mismatch is detected, the PERR flag in STATUS will
be set.

These bits are unused in master SPI mode operation.

• Bit 3 – SBMODE: Stop Bit Mode
This bit selects the number of stop bits to be inserted by the transmitter according to Table 23-9
on page 313. The receiver ignores this setting.

This bit is unused in master SPI mode operation.

• Bit 2:0 – CHSIZE[2:0]: Character Size
The CHSIZE[2:0] bits set the number of data bits in a frame according to Table 23-10 on page
313. The receiver and transmitter use the same setting.

Table 23-8. PMODE bit settings.

PMODE[1:0] Group Configuration Parity Mode

00 DISABLED Disabled

01 Reserved

10 EVEN Enabled, even parity

11 ODD Enabled, odd parity

Table 23-9. SBMODE bit settings.

SBMODE Stop Bit(s)

0 1

1 2

Table 23-10. CHSIZE bit settings.

CHSIZE[2:0] Group Configuration Character Size

000 5BIT 5-bit

001 6BIT 6-bit

010 7BIT 7-bit

011 8BIT 8-bit

100 Reserved

101 Reserved

110 Reserved

111 9BIT 9-bit
313
8331B–AVR–03/12

Atmel AVR XMEGA AU
• Bit 2 – UDORD: Data Order
This bit is only for master SPI mode, and this bit sets the frame format. When written to one, the
lsb of the data word is transmitted first. When written to zero, the msb of the data word is trans-
mitted first. The receiver and transmitter use the same setting. Changing the setting of UDORD
will corrupt all ongoing communication for both receiver and transmitter.

• Bit 1 – UCPHA: Clock Phase
This bit is only for master SPI mode, and the bit determine whether data are sampled on the
leading (first) edge or tailing (last) edge of XCKn. Refer to the ”Master SPI Mode Clock Genera-
tion” on page 297 for details.

23.15.6 BAUDCTRLA – Baud Rate register A

• Bit 7:0 – BSEL[7:0]: Baud Rate Register
These are the lower 8 bits of the 12-bit BSEL value used for USART baud rate setting. BAUDC-
TRLB contains the four most-significant bits. Ongoing transmissions by the transmitter and
receiver will be corrupted if the baud rate is changed. Writing BSEL will trigger an immediate
update of the baud rate prescaler. See the equations in Table 23-1 on page 296.

23.15.7 BAUDCTRLB – Baud Rate register B

• Bit 7:4 – BSCALE[3:0]: Baud Rate Scale factor
These bits select the baud rate generator scale factor. The scale factor is given in two's comple-
ment form from -7 (0b1001) to +7 (0b0111). The -8 (0b1000) setting is reserved. See the
equations in Table 23-1 on page 296.

• Bit 3:0 – BSEL[11:8]: Baud Rate Register
These are the upper 4 bits of the 12-bit value used for USART baud rate setting. BAUDCTRLA
contains the eight least-significant bits. Ongoing transmissions by the transmitter and receiver
will be corrupted if the baud rate is changed. Writing BAUDCTRLA will trigger an immediate
update of the baud rate prescaler.

Bit 7 6 5 4 3 2 1 0

+0x06 BSEL[7:0] BAUDCTRLA

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x07 BSCALE[3:0] BSEL[11:8] BAUDCTRLB

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
314
8331B–AVR–03/12

Atmel AVR XMEGA AU
23.16 Register Summary

23.16.1 Register Description - USART

23.16.2 Register Description - USART in SPI Master Mode

23.17 Interrupt Vector Summary

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page
+0x00 DATA DATA[7:0] 309

+0x01 STATUS RXCIF TXCIF DREIF FERR BUFOVF PERR – RXB8 309

+0x02 Reserved – – – – – – – –

+0x03 CTRLA – – RXCINTLVL[1:0] TXCINTLVL[1:0] DREINTLVL[1:0] 311

+0x04 CTRLB – – – RXEN TXEN CLK2X MPCM TXB8 311

CTRLC CMODE[1:0] PMODE[1:0] SBMODE CHSIZE[2:0] 312

+0x06 BAUDCTRLA BSEL[7:0] 314

+0x07 BAUDCTRLB BSCALE[3:0] BSEL[11:8] 314

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page
+0x00 DATA DATA[7:0] 309

+0x01 STATUS RXCIF TXCIF DREIF – – – – – 309

+0x02 Reserved – – – – – – – –

+0x03 CTRLA – – RXCINTLVL[1:0] TXCINTLVL[1:0] DREINTLVL[1:0] 311

+0x04 CTRLB – – – RXEN TXEN – – – 311

+0x05 CTRLC CMODE[1:0] – – – UDORD UCPHA – 312

+0x06 BAUDCTRLA BSEL[7:0] 314

+0x07 BAUDCTRLB BSCALE[3:0] BSEL[11:8] 314

Table 23-11. USART interrupt vectors and their word offset address.

Offset Source Interrupt Description

0x00 RXC_vect USART receive complete interrupt vector

0x02 DRE_vect USART data register empty interrupt vector

0x04 TXC_vect USART transmit complete interrupt vector
315
8331B–AVR–03/12

Atmel AVR XMEGA AU
24. IRCOM - IR Communication Module

24.1 Features
• Pulse modulation/demodulation for infrared communication
• IrDA compatible for baud rates up to 115.2kbps
• Selectable pulse modulation scheme

– 3/16 of the baud rate period
– Fixed pulse period, 8-bit programmable
– Pulse modulation disabled

• Built-in filtering
• Can be connected to and used by any USART

24.2 Overview
XMEGA devices contain an infrared communication module (IRCOM) that is IrDA compatible for
baud rates up to 115.2kbps. It can be connected to any USART to enable infrared pulse encod-
ing/decoding for that USART.

Figure 24-1. IRCOM connection to USARTs and associated port pins.

The IRCOM is automatically enabled when a USART is set in IRCOM mode. The signals
between the USART and the RX/TX pins are then routed through the module as shown in Figure
24-1 on page 316. The data on the TX/RX pins are the inverted value of the transmitted/received
infrared pulse. It is also possible to select an event channel from the event system as input for
the IRCOM receiver. This will disable the RX input from the USART pin.

IRCOM

Pulse
Decoding

DIF

Event System

RXDxn
TXDxn

USARTxn

....

USARTD0

USARTC0

RXDD0
TXDD0

RXDC0
TXDC0

Pulse
Encoding

decoded RXD

encoded TXD

encoded RXD

RXD...
TXD...

decoded TXD

events
316
8331B–AVR–03/12

Atmel AVR XMEGA AU
For transmission, three pulse modulation schemes are available:

• 3/16 of the baud rate period

• Fixed programmable pulse time based on the peripheral clock frequency

• Pulse modulation disabled

For reception, a fixed programmable minimum high-level pulse width for the pulse to be decoded
as a logical 0 is used. Shorter pulses will then be discarded, and the bit will be decoded to logical
1 as if no pulse was received.

The module can only be used in combination with one USART at a time. Thus, IRCOM mode
must not be set for more than one USART at a time. This must be ensured in the user software.

24.2.1 Event System Filtering
The event system can be used as the receiver input. This enables IRCOM or USART input from
I/O pins or sources other than the corresponding RX pin. If event system input is enabled, input
from the USART's RX pin is automatically disabled. The event system has a digital input filter
(DIF) on the event channels that can be used for filtering. Refer to ”Event System” on page 71”
for details on using the event system.
317
8331B–AVR–03/12

Atmel AVR XMEGA AU
24.3 Registers Description

24.3.1 TXPLCTRL – Transmitter Pulse Length Control Register

• Bit 7:0 – TXPLCTRL[7:0]: Transmitter Pulse Length Control
This 8-bit value sets the pulse modulation scheme for the transmitter. Setting this register will
have no effect if IRCOM mode is not selected by a USART.

By leaving this register value to zero, 3/16 of the baud rate period pulse modulation is used.

Setting this value from 1 to 254 will give a fixed pulse length coding. The 8-bit value sets the
number of system clock periods for the pulse. The start of the pulse will be synchronized with the
rising edge of the baud rate clock.

Setting the value to 255 (0xFF) will disable pulse coding, letting the RX and TX signals pass
through the IRCOM module unaltered. This enables other features through the IRCOM module,
such as half-duplex USART, loop-back testing, and USART RX input from an event channel.

TXPCTRL must be configured before the USART transmitter is enabled (TXEN).

24.3.2 RXPLCTRL – Receiver Pulse Length Control Register

• Bit 7:0 – RXPLCTRL[7:0]: Receiver Pulse Length Control
This 8-bit value sets the filter coefficient for the IRCOM transceiver. Setting this register will have
no effect if IRCOM mode is not selected by a USART.

By leaving this register value at zero, filtering is disabled. Setting this value between 1 and 255
will enable filtering, where x+1 equal samples are required for the pulse to be accepted.

RXPCTRL must be configured before the USART receiver is enabled (RXEN).

24.3.3 CTRL – Control Register

• Bit 7:4 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

Bit 7 6 5 4 3 2 1 0

+0x01 TXPLCTRL[7:0] TXPLCTRL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x02 RXPLCTRL[7:0] RXPLCTRL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x00 – – – – EVSEL[3:0] CTRL

Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
318
8331B–AVR–03/12

Atmel AVR XMEGA AU
• Bit 3:0 – EVSEL [3:0]: Event Channel Selection
These bits select the event channel source for the IRCOM receiver according to Table 24-1 on
page 319. If event input is selected for the IRCOM receiver, the input from the USART’s RX pin
is automatically disabled.

24.4 Register Summary

Table 24-1. Event channel selection.

EVSEL[3:0] Group Configuration Event Source

0000 None

0001 (Reserved)

0010 (Reserved)

0011 (Reserved)

0100 (Reserved)

0101 (Reserved)

0110 (Reserved)

0111 (Reserved)

1nnn CHn Event system channel n; n = {0, …,7}

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page

+0x00 CTRL – – – – EVSEL[3:0] 318

+0x01 TXPLCTRL TXPLCTRL[7:0] 318

+0x02 RXPLCTRL RXPLCTRL[7:0] 318
319
8331B–AVR–03/12

Atmel AVR XMEGA AU
25. AES and DES Crypto Engines

25.1 Features
• Data Encryption Standard (DES) CPU instruction
• Advanced Encryption Standard (AES) crypto module
• DES Instruction

– Encryption and decryption
– DES supported
– Encryption/decryption in 16 CPU clock cycles per 8-byte block

• AES crypto module
– Encryption and decryption
– Supports 128-bit keys
– Supports XOR data load mode to the state memory
– Encryption/decryption in 375 clock cycles per 16-byte block

25.2 Overview
The Advanced Encryption Standard (AES) and Data Encryption Standard (DES) are two com-
monly used standards for cryptography. These are supported through an AES peripheral
module and a DES CPU instruction, and the communication interfaces and the CPU can use
these for fast, encrypted communication and secure data storage.

DES is supported by an instruction in the AVR CPU. The 8-byte key and 8-byte data blocks must
be loaded into the register file, and then the DES instruction must be executed 16 times to
encrypt/decrypt the data block.

The AES crypto module encrypts and decrypts 128-bit data blocks with the use of a 128-bit key.
The key and data must be loaded into the key and state memory in the module before encryp-
tion/decryption is started. It takes 375 peripheral clock cycles before the encryption/decryption is
done. The encrypted/encrypted data can then be read out, and an optional interrupt can be gen-
erated. The AES crypto module also has DMA support with transfer triggers when
encryption/decryption is done and optional auto-start of encryption/decryption when the state
memory is fully loaded.

25.3 DES Instruction
The DES instruction is a single cycle instruction. In order to decrypt or encrypt a 64-bit (8-byte)
data block, the instruction has to be executed 16 times.

The data and key blocks must be loaded into the register file before encryption/decryption is
started. The 64-bit data block (plaintext or ciphertext) is placed in registers R0-R7, where the
LSB of data is placed in R0 and the MSB of data is placed in R7. The full 64-bit key (including
parity bits) is placed in registers R8-R15, with the LSB of the key in R8 and the MSB of the key
in R15.
320
8331B–AVR–03/12

Atmel AVR XMEGA AU
Figure 25-1. Register file usage during DES encryption/decryption.

Executing one DES instruction performs one round in the DES algorithm. Sixteen rounds must
be executed in increasing order to form the correct DES ciphertext or plaintext. Intermediate
results are stored in the register file (R0-R15) after each DES instruction. After sixteen rounds,
the key is located in R8-R16 and the encrypted/decrypted ciphertext/plaintext is located in R0-
R7. The instruction's operand (K) determines which round is executed, and the half carry flag (H)
in the CPU status register determines whether encryption or decryption is performed. If the half
carry flag is set, decryption is performed, and if the flag is cleared, encryption is performed.

For more details on the DES instruction, refer to the AVR instruction set manual.

25.4 AES Crypto Module
The AES crypto module performs encryption and decryption according to the Advanced Encryp-
tion Standard (FIPS-197). The 128-bit key block and 128-bit data block (plaintext or ciphertext)
must be loaded into the key and state memories in the AES crypto module. This is done by writ-
ing the AES KEY register and STATE register sequentially with 16 bytes.

It is software selectable whether the module should perform encryption or decryption. It is also
possible to enable XOR mode, where all new data loaded to the state key is XORed with the cur-
rent data in the state memory.

The AES module uses 375 clock cycles before the encrypted/decrypted plaintext/ciphertext is
available for readout in the state memory.

Register File
R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13

R14

R15

R16

...

R31

data0

data1

data2

data3

data4

data5

data6

data7

key0

key1

key2

key3

key4

key5

key6

key7
data

key
321
8331B–AVR–03/12

Atmel AVR XMEGA AU
The following setup and use procedure is recommended:

1. Enable the AES interrupt (optional).

2. Select the AES direction to encryption or decryption.

3. Load the key data block into the AES key memory.

4. Load the data block into the AES state memory.

5. Start the encryption/decryption operation.

If more than one block is to be encrypted or decrypted, repeat the procedure from step 3.

When the encryption/decryption procedure is complete, the AES interrupt flag is set and an
optional interrupt is generated.

25.4.1 Key and State Memory
The AES key and state memory are both 16 x 8-bit memories that are accessible through the
KEY and STATE registers, respectively.

Each memory has two 4-bit address pointers used to address the memory for read and write,
respectively. The initial value of the pointers is zero. After a read or write operation to the STATE
or KEY register, the appropriate pointer is automatically incremented. Accessing (read or write)
the control register (CTRL) will reset all pointers to zero. A pointer overflow (a sequential read or
write done more than 16 times) will also set the affected pointer to zero. The pointers are not
accessible from software. Read and write memory pointers are both incremented during write
operations in XOR mode.

Access to the KEY and STATE registers is possible only when encryption/decryption is not in
progress.

Figure 25-2. The state memory with pointers and register.

The state memory contains the AES state throughout the encryption/decryption process. The ini-
tial value of the state is the initial data (i.e., plaintext in the encryption mode, and ciphertext in the
decryption mode). The last value of the state is the encrypted/decrypted data.

4-bit state write
address pointer

1

-

14
15

STATE

0 4-bit state read
address pointer

Reset pointer

Reset pointer

reset or access
to AES Control

reset or access
to AES Control

STATE[read pointer]

xor

XOR

I/O Data Bus
322
8331B–AVR–03/12

Atmel AVR XMEGA AU
Figure 25-3. The key memory with pointers and register.

In the AES crypto module, the following definition of the key is used:

• In encryption mode, the key is the one defined in the AES standard.

• In decryption mode, the key is the last subkey of the expanded key defined in the AES
standard.

In decryption mode, the key expansion procedure must be executed by software before opera-
tion with the AES crypto module so that the last subkey is ready to be loaded through the KEY
register. Alternatively, this procedure can be run in hardware by using the AES crypto module to
process a dummy data block in encryption mode using the same key. After the end of the
encryption, reading from the key memory allows the last subkey to be obtained; i.e., get the
result of the key expansion procedure. Table 25-1 on page 323 shows the results of reading the
key, depending on the mode (encryption or decryption) and status of the AES crypto module.

25.4.2 DMA Support
The AES module can trigger a DMA transfer when the encryption/decryption procedure is com-
plete. For more details on DMA transfer triggers, refer to ”Transfer Triggers” on page 56.

Table 25-1. The result of reading the key memory at different stages.

Encryption Decryption

Before Data
Processing

After Data
Processing

Before Data
Processing

After Data
Processing

Same key as loaded
The last subkey

generated from the
loaded key

Same key as loaded
The initial key

generated from the last
loaded subkey

4-bit key write
address pointer

1

-

14
15

KEY

0 4-bit key read
address pointer

Reset pointer

Reset pointer

reset or
access to CTRL

reset or
access to CTRL
323
8331B–AVR–03/12

Atmel AVR XMEGA AU
25.5 Register Description – AES

25.5.1 CTRL – Control register

• Bit 7 – START: Start/Run
Setting this bit starts the encryption/decryption procedure, and this bit remains set while the
encryption/decryption is ongoing. Writing this bit to zero will stop/abort any ongoing encryp-
tion/decryption process. This bit is automatically cleared if the SRIF or the ERROR flags in
STATUS are set.

• Bit 6 – AUTO: Auto Start Trigger
Setting this bit enables the auto-start mode. In auto-start mode, the START bit will trigger auto-
matically and start the encryption/decryption when all of the following conditions are met:

• The AUTO bit is set before the state memory is loaded

• All memory pointers (state read/write and key read/write) are zero

• State memory is fully loaded

If all of these conditioins are not met, the encryption/decryption will be started with an incorrect
key.

• Bit 5 – RESET: Software Reset
Setting this bit will reset the AES crypto module to its initial status on the next positive edge of
the peripheral clock. All registers, pointers, and memories in the module are set to their initial
value. When written to one, the bit stays high for one clock cycle before it is reset to zero by
hardware.

• Bit 4 – DECRYPT: Decryption / Direction
This bit sets the direction for the AES crypto module. Writing this bit to zero will set the module in
encryption mode. Writing one to this bit sets the module in decryption mode.

• Bit 3 – Reserved
This bit is unused and reserved for future use. For compatibility with future devices, always write
this bit to zero when this register is written.

• Bit 2 – XOR: State XOR Load Enable
Setting this bit enables a XOR data load to the state memory. When this bit is set, the data
loaded to the state memory are bitwise XORed with the data currently in the state memory. Writ-
ing this bit to zero disables XOR load mode, and new data written to the state memory will
overwrite the current data.

Bit 7 6 5 4 3 2 1 0

+0x00 START AUTO RESET DECRYPT – XOR – – CTRL

Read/Write R/W R/W R/W R/W R R/W R R

Initial Value 0 0 0 0 0 0 0 0
324
8331B–AVR–03/12

Atmel AVR XMEGA AU
• Bit 1:0 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

25.5.2 STATUS – AES Status register

• Bit 7 – ERROR: Error
The ERROR flag indicates an illegal handling of the AES crypto module. The flag is set in the fol-
lowing cases:

• Setting START in the control register while the state memory and/or key memory are not fully
loaded or read. This error occurs when the total number of read/write operations from/to the
STATE and KEY registers is not a multiple of 16 before an AES start.

• Accessing (read or write) the control register while the START bit is one.

This flag can be cleared by software by writing one to its bit location.

• Bit 6:1 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

• Bit 0 – SRIF: State Ready Interrupt flag
This flag is the interrupt/DMA request flag, and is set when the encryption/decryption procedure
is completed and the state memory contains valid data. As long as the flag is zero, this indicates
that there is no valid encrypted/decrypted data in the state memory.

The flag is cleared by hardware when a read access is made to the state memory (the first byte
is read). Alternatively, the bit can be cleared by writing a one to its bit location.

25.5.3 STATE – AES State register

The STATE register is used to access the state memory. Before encryption/decryption can take
place, the state memory must be written sequentially, byte-by-byte, through the STATE register.
After encryption/decryption is done, the ciphertext/plaintext can be read sequentially, byte-by-
byte, through the STATE register.

Loading the initial data to the STATE register should be done after setting the appropriate AES
mode and direction. This register can not be accessed during encryption/decryption.

Bit 7 6 5 4 3 2 1 0

+0x01 ERROR – – – – – – SRIF STATUS

Read/Write R/W R R R R R R R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x02 STATE[7:0] STATE

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
325
8331B–AVR–03/12

Atmel AVR XMEGA AU
25.5.4 KEY – Key register

The KEY register is used to access the key memory. Before encryption/decryption can take
place, the key memory must be written sequentially, byte-by-byte, through the KEY register.
After encryption/decryption is done, the last subkey can be read sequentially, byte-by-byte,
through the KEY register.

Loading the initial data to the KEY register should be done after setting the appropriate AES
mode and direction.

25.5.5 INTCTRL – Interrupt Control register

• Bit 7:2 – Reserved

These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

• Bit 1:0 – INTLVL[1:0]: Interrupt priority and enable

These bits enable the AES interrupt and select the interrupt level, as described in ”Interrupts and
Programmable Multilevel Interrupt Controller” on page 134. The enabled interrupt will be trig-
gered when the SRIF in the STATUS register is set.

Bit 7 6 5 4 3 2 1 0

+0x03 KEY[7:0] KEY

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x04 – – – – – – INTLVL[1:0] INTCTRL

Read/Write R R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0
326
8331B–AVR–03/12

Atmel AVR XMEGA AU
25.6 Register Summary - AES

25.7 Interrupt vector Summary - AES

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page
+0x00 CTRL START AUTO RESET DECRYPT – XOR – – 324

+0x01 STATUS ERROR – – – – – – SRIF 325

+0x02 STATE STATE[7:0] 325

+0x03 KEY KEY[7:0] 326

+0x04 INTCTRL – – – – – – INTLVL[1:0] 326

+0x05 Reserved – – – – – – – –

+0x06 Reserved – – – – – – – –

+0x07 Reserved – – – – – – – –

Table 25-2. AES interrupt vector and its offset word address.

Offset Source Interrupt Description

0x00 AES_vect AES interrupt vector
327
8331B–AVR–03/12

Atmel AVR XMEGA AU
26. CRC – Cyclic Redundancy Check Generator

26.1 Features
• Cyclic redundancy check (CRC) generation and checking for

– Communication data
– Program or data in flash memory
– Data in SRAM and I/O memory space

• Integrated with flash memory, DMA controller and CPU
– Continuous CRC on data going through a DMA channel
– Automatic CRC of the complete or a selectable range of the flash memory
– CPU can load data to the CRC generator through the I/O interface

• CRC polynomial software selectable to
– CRC-16 (CRC-CCITT)
– CRC-32 (IEEE 802.3)

• Zero remainder detection

26.2 Overview
A cyclic redundancy check (CRC) is an error detection technique test algorithm used to find
accidental errors in data, and it is commonly used to determine the correctness of a data trans-
mission, and data present in the data and program memories. A CRC takes a data stream or a
block of data as input and generates a 16- or 32-bit output that can be appended to the data and
used as a checksum. When the same data are later received or read, the device or application
repeats the calculation. If the new CRC result does not match the one calculated earlier, the
block contains a data error. The application will then detect this and may take a corrective
action, such as requesting the data to be sent again or simply not using the incorrect data.

Typically, an n-bit CRC applied to a data block of arbitrary length will detect any single error
burst not longer than n bits (any single alteration that spans no more than n bits of the data), and
will detect the fraction 1-2-n of all longer error bursts. The CRC module in XMEGA devices sup-
ports two commonly used CRC polynomials; CRC-16 (CRC-CCITT) and CRC-32 (IEEE 802.3).

• CRC-16:

• CRC-32:

 Polynomial: x16+x12+x5+1

 Hex value: 0x1021

 Polynomial: x32+x26+x23+x22+x16+x12+x11+x10+x8+x7+x5+x4+x2+x+1

 Hex value: 0x04C11DB7
328
8331B–AVR–03/12

Atmel AVR XMEGA AU
26.3 Operation
The data source for the CRC module must be selected in software as either flash memory, the
DMA channels, or the I/O interface. The CRC module then takes data input from the selected
source and generates a checksum based on these data. The checksum is available in the
CHECKSUM registers in the CRC module. When CRC-32 polynomial is used, the final check-
sum read is bit reversed and complemented (see Figure 26-1).

For the I/O interface or DMA controller, which CRC polynomial is used is software selectable,
but the default setting is CRC-16. CRC-32 is automatically used if Flash Memory is selected as
the source. The CRC module operates on bytes only.

Figure 26-1. CRC generator block diagram.

26.4 CRC on Flash memory
A CRC-32 calculation can be performed on the entire flash memory, on only the application sec-
tion, on only the boot section, or on a software selectable range of the flash memory. Other than
selecting the flash as the source, all further control and setup are done from the NVM controller.
This means that the NVM controller configures the memory range to perform the CRC on, and
the CRC is started using NVM commands. Once completed, the result is available in the check-
sum registers in the CRC module. For further details on setting up and performing CRC on flash
memory, refer to ”Memory Programming” on page 431.

DATAIN

CTRL

Flash
Memory

DMA
Controller

CRC-16 CRC-32

CHECKSUM

bit-reverse +
complement

168 8 32

Checksum read

crc32
329
8331B–AVR–03/12

Atmel AVR XMEGA AU
26.5 CRC on DMA Data
CRC-16 or CRC-32 calculations can be performed on data passing through any DMA channel.
Once a DMA channel is selected as the source, the CRC module will continuously generate the
CRC on the data passing through the DMA channel. The checksum is available for readout once
the DMA transaction is completed or aborted. A CRC can be performed not only on communica-
tion data, but also on data in SRAM or I/O memory by passing these data through a DMA
channel. If the latter is done, the destination register for the DMA data can be the data input
(DATAIN) register in the CRC module. Refer to ”DMAC - Direct Memory Access Controller” on
page 54 for more details on setting up DMA transactions.

26.6 CRC using the I/O Interface
CRC can be performed on any data by loading them into the CRC module using the CPU and
writing the data to the DATAIN register. Using this method, an arbitrary number of bytes can be
written to the register by the CPU, and CRC is done continuously for each byte. New data can
be written for each cycle. The CRC complete is signaled by writing the BUSY bit in the STATUS
register.
330
8331B–AVR–03/12

Atmel AVR XMEGA AU
26.7 Register Description

26.7.1 CTRL – Control register

• Bit 7:6 – RESET[1:0]: Reset
These bits are used to reset the CRC module, and they will always be read as zero. The CRC
registers will be reset one peripheral clock cycle after the RESET[1] bit is set.

• Bit 5 – CRC32: CRC-32 Enable
Setting this bit will enable CRC-32 instead of the default CRC-16. It cannot be changed while the
BUSY flag is set.

• Bit 4 – Reserved
This bit is unused and reserved for future use. For compatibility with future devices, always write
this bit to zero when this register is written.

• Bit 3:0 – SOURCE[3:0]: Input Source
These bits select the input source for generating the CRC. The selected source is locked until
either the CRC generation is completed or the CRC module is reset. CRC generation complete
is generated and signaled from the selected source when used with the DMA controller or flash
memory.

Bit 7 6 5 4 3 2 1 0

+0x00 RESET[1:0] CRC32 – SOURCE[3:0] CTRL

Read/Write R/W R/W R/W R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 26-1. CRC reset.

RESET[1:0] Group configuration Description

00 NO No reset

01 — Reserved

10 RESET0 Reset CRC with CHECKSUM to all zeros

11 RESET1 Reset CRC with CHECKSUM to all ones

Table 26-2. CRC source select .

SOURCE[3:0] Group configuration Description

0000 DISABLE CRC disabled

0001 IO I/O interface

0010 FLASH Flash

0011 — Reserved for future use

0100 DMACH0 DMA controller channel 0

0101 DMACH1 DMA controller channel 1
331
8331B–AVR–03/12

Atmel AVR XMEGA AU
26.7.2 STATUS – Status register

• Bit 7:2 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

• Bit 1 – ZERO: Checksum Zero
This flag is set if the CHECKSUM is zero when the CRC generation is complete. It is automati-
cally cleared when a new CRC source is selected.

When running CRC-32 and appending the checksum at the end of the packet (as little endian),
the final checksum shold be 0x2144df1c, and not zero. However, if the checksum is comple-
mented before it is appended (as little endian) to the data, the final result in the checksum
register will be zero.

See the description of CHECKSUM to read out different versions of the CHECKSUM.

• Bit 0 – BUSY: Busy
This flag is read as one when a source configuration is selected and as long as the source is
using the CRC module. If the I/O interface is selected as the source, the flag can be cleared by
writing a one this location. If a DMA channel if selected as the source, the flag is cleared when
the DMA channel transaction is completed or aborted. If flash memory is selected as the source,
the flag is cleared when the CRC generation is completed.

26.7.3 DATAIN – Data Input Register

• Bit 7:0 – DATAIN[7:0]
This register is used to store the data for which the CRC checksum is computed. A new CHECK-
SUM is ready one clock cycle after the DATAIN register is written.

0110 DMACH2 DMA controller channel 2

0111 DMACH3 DMA controller channel 3

1xxx — Reserved for future use

Table 26-2. CRC source select (Continued).

SOURCE[3:0] Group configuration Description

Bit 7 6 5 4 3 2 1 0

+0x02 – – – – – – ZERO BUSY STATUS

Read/Write R R R R R R R R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x03 DATAIN[7:0] DATAIN

Read/Write W W W W W W W W

Initial Value 0 0 0 0 0 0 0 0
332
8331B–AVR–03/12

Atmel AVR XMEGA AU
26.7.4 CHECKSUM0 – Checksum Byte 0
CHECKSUM0, CHECKSUM1, CHECKSUM2, and CHECKSUM3 represent the 16- or 32-bit
CHECKSUM value and the generated CRC. The registers are reset to zero by default, but it is
possible to write RESET to reset all bits to one. It is possible to write these registers only when
the CRC module is disabled. If NVM is selected as the source, reading CHECKSUM will return a
zero value until the BUSY flag is cleared. If CRC-32 is selected and the BUSY flag is cleared
(i.e., CRC generation is completed or aborted), the bit reversed (bit 31 is swapped with bit 0, bit
30 with bit 1, etc.) and complemented result will be read from CHECKSUM. If CRC-16 is
selected or the BUSY flag is set (i.e., CRC generation is ongoing), CHECKSUM will contain the
actual content.

• Bit 7:0 – CHECKSUM[7:0]
These bits hold byte 0 of the generated CRC.

26.7.5 CHECKSUM1 – Checksum Byte 1

• Bit 7:0 – CHECKSUM[15:8]
These bits hold byte 1 of the generated CRC.

26.7.6 CHECKSUM2 – Checksum Byte 2

• Bit 7:0 – CHECKSUM[23:16]
These bits hold byte 2 of the generated CRC when CRC-32 is used.

26.7.7 CHECKSUM3 – CRC Checksum Byte 3

Bit 7 6 5 4 3 2 1 0

+0x04 CHECKSUM[7:0] CHECKSUM0

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x05 CHECKSUM[15:8] CHECKSUM1

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x06 CHECKSUM[23:16] CHECKSUM2

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x07 CHECKSUM[31:24] CHECKSUM3

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
333
8331B–AVR–03/12

Atmel AVR XMEGA AU
• Bit 7:0 – CHECKSUM[31:24]
These bits hold byte 3 of the generated CRC when CRC-32 is used.

26.8 Register Sumary
Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page

+0x00 CTRL RESET[1:0] CRC32 – SOURCE[3:0] 331

+0x01 STATUS – – – – – – ZERO BUSY 332

+0x02 Reserved – – – – – – – –

+0x03 DATAIN DATAIN[7:0] 333

+0x04 CHECKSUM0 CHECKSUM[7:0] 333

+0x05 CHECKSUM1 CHECKSUM[15:8] 333

+0x06 CHECKSUM2 CHECKSUM[23:16] 333

+0x07 CHECKSUM3 CHECKSUM[31:24] 333
334
8331B–AVR–03/12

Atmel AVR XMEGA AU
27. EBI – External Bus Interface

27.1 Features
• Supports SRAM up to:

– 512KB using 2-port EBI
– 16MB using 3-port EBI

• Supports SDRAM up to:
– 128Mb using 3-port EBI

• Four software configurable chip selects
• Software configurable wait state insertion
• Can run from the 2x peripheral clock frequency for fast access

27.2 Overview
The External Bus Interface (EBI) is used to connect external peripherals and memory for
accessthrough the data memory space. When the EBI is enabled, data address space outside
the internal SRAM becomes available using dedicated EBI pins.

The EBI can interface external SRAM, SDRAM, and peripherals, such as LCD displays and
other memory mapped devices.

The address space for the external memory is selectable from 256 bytes (8-bit) up to 16MB (24-
bit). Various multiplexing modes for address and data lines can be selected for optimal use of
pins when more or fewer pins are available for the EBI. The complete memory will be mapped
into one linear data address space continuing from the end of the internal SRAM. Refer to ”Data
Memory” on page 22 for details.

The EBI has four chip selects, each with separate configuration. Each can be configured for
SRAM, SRAM low pin count (LPC), or SDRAM.

The EBI is clocked from the fast, 2x peripheral clock, running up to two times faster than the
CPU.

Four-bit and eight-bit SDRAM are supported, and SDRAM configurations, such as CAS latency
and refresh rate, are configurable in software.

For more details on SRAM and SDRAM, and on how these memory types are organized and
work, refer to SRAM and SDRAM-specific documentation and datasheets. This section only
contains EBI-specific details.

27.3 Chip Select
The EBI module has four chip select lines (CS0 to CS3), which can be associated with separate
address ranges. The chip selects control which memory or memory mapped external hardware
is accessed when a given memory address is issued on the EBI. Each chip select has separate
configuration, and can be configured for SRAM or SRAM low pin count (LPC). Chip select 3 can
also be configured for SDRAM.

Each chip select has a configurable base address and address size, which are used to deter-
mine the data memory address space associated with each chip select.
335
8331B–AVR–03/12

Atmel AVR XMEGA AU
27.3.1 Base Address
The base address assigned to a chip select is the lowest address in the address space, and
determines the first location in data memory space where the connected memory hardware can
be accessed. The base address associated with each chip select must be on a 4KB boundary.

Figure 27-1. Base Address

27.3.2 Address Size
The address size selects how many bits of the address should be compared when generating a
chip select. The address size can be anywhere from 256 bytes to 16MB. If the address space is
set to anything larger than 4KB, the base address must be on a boundary equal to the address
space. For example, with 1MB address space for a chip select, the base address must be on a
1MB, 2MB, etc. boundary.

If the EBI is configured so that the address spaces overlap, the internal memory space will have
priority, followed by chip select 0 (CS0), CS1, CS2, and CS3.

27.3.3 Chip Select as Address Lines
If any chip select lines are unused, these can, in some combinations, be used as address lines.
This enables larger external memory or external CS generation. Each column in Figure 27-2 on
page 336 shows enabled chip select lines (CSn) and the address lines available on unused chip
select lines (An). The right-hand column shows that all four CS lines are used as address lines
when only CS3 is enabled.

Figure 27-2. Chip Select and address line combinations

ADDRESS[23:n]

BASEADDR[23:n]

=

ADDRESS[n-1:0] A[n-1:0]

D[7:0]

CS

CS3

CS2

CS1

CS0

CS3

CS2

CS1

A16

CS3

CS2

A17

A16

A19

A18

A17

A16
336
8331B–AVR–03/12

Atmel AVR XMEGA AU
27.4 EBI Clock
The EBI is clocked from the Peripheral 2x (ClkPER2) Clock. This clock can run at the CPU Clock
frequency, or at two times the CPU Clock frequency. This can be used to lower the EBI access
time. Refer to ”System Clock and Clock Options” on page 82 for details the Peripheral 2x Clock
and how to configure this.

27.5 SRAM Configuration
When used with SRAM, the EBI can be configured with no multiplexing, or it can employ various
address multiplexing modes by using external address latches. When a limited number of pins
are available on the device for the EBI, address latch enable (ALE) signals are used to control
the external latches that multiplex address lines from the EBI. The available configurations are
shown in ”No Multiplexing” on page 337 through ”Multiplexing address byte 0, 1and 2” on page
338. Table 27-1 on page 337 describes the SRAM interface signals.

27.5.1 No Multiplexing
When no multiplexing is used, there is a one-to-one connection between the EBI and the SRAM.
No external address latches are used.

Figure 27-3. Non-multiplexed SRAM connection.

27.5.2 Multiplexing address byte 0 and 1
When address byte 0 (A[7:0]) and address byte 1 (A[15:8]) are multiplexed, they are output from
the same port, and the ALE1 signal from the device controls the address latch.

Table 27-1. SRAM Interface signals.

Signal Description

CS Chip Select

WE Write Enable

RE Read Enable

ALE[2:1] Address Latch Enable

A[23:0] Address

D[7:0] Data bus

AD[7:0] Combined Address and Data

EBI SRAM

D[7:0]

A[7:0]

D[7:0]

A[7:0]

A[15:8]

A[21:16]

A[15:8]

A[21:16]
337
8331B–AVR–03/12

Atmel AVR XMEGA AU
Figure 27-4. Multiplexed SRAM connection using ALE1.

27.5.3 Multiplexing address byte 0 and 2
When address byte 0 (A[7:0]) and address byte 2 (A[23:16) are multiplexed, they are output
from the same port, and the ALE2 signal from the device controls the address latch.

Figure 27-5. Multiplexed SRAM connection using ALE2.

27.5.4 Multiplexing address byte 0, 1and 2
When address byte 0 (A[7:0]), address byte 1 (A[15:8]) and address byte 2 (A[23:16] are multi-
plexed, they are output from the same port, and the ALE1 and ALE2 signal from the device
control the external address latches.

Figure 27-6. Multiplexed SRAM connection using ALE1 and ALE2.

EBI SRAM

D[7:0]

A[15:8]/
A[7:0]

ALE1

D Q

G

D[7:0]

A[7:0]

A[15:8]

A[19:16]A[19:16]

EBI SRAM

D[7:0]

A[23:16]/
A[7:0]

ALE2

D Q

G

D[7:0]

A[7:0]

A[15:8]

A[23:16]

A[15:8]

EBI SRAM

D[7:0]
A[23:16]/

A[15:8]/
A[7:0]

ALE1

ALE2

D Q

G

D Q

G

D[7:0]

A[7:0]

A[15:8]

A[23:16]
338
8331B–AVR–03/12

Atmel AVR XMEGA AU
27.5.5 Address Latches
The Address Latch timing and parameter requirements are described in EBI Timing. See the
device datasheet characteristics for details. To reduce access time when using multiplexing of
address, the ALE signals are only issued when it is required to update the latched address. For
instance if address lines A[15:8] are multiplexed with A[7:0] the ALE1 and A[15:8] are only given
if any bit in A[15:8] are changed since the last time ALE was set.

27.5.6 Timing
SRAM or external memory devices may have different timing requirements. To meet these vary-
ing requirements, each Chip Select can be configured with different wait-states. Timing details
are described in the device datasheet.

27.6 SRAM LPC Configuration
The SRAM Low Pin Count (LPC) configuration enables EBI to be configured for multiplexing
modes where the data and address lines are multiplexed. Compared to SRAM configuration,
this can further reduce the number of pins required for the EBI. The available configurations is
shown in ”Multiplexing Data with Address Byte 0” on page 339 through ”Multiplexing Data with
Address Byte 0 and 1” on page 339.

Timing and Address Latch requirements is as for SRAM configuration.

27.6.1 Multiplexing Data with Address Byte 0
When the data byte and address byte 0 (AD[7:0]) are multiplexed, they are output from the same
port, and the ALE1 signal from the device controls the address latch.

Figure 27-7. Multiplexed SRAM LPC connection using ALE1.

27.6.2 Multiplexing Data with Address Byte 0 and 1
When the data byte and address byte 0 (AD[7:0]), and address byte 1 (A[15:8]) are multiplexed,
they are output from the same port, and the ALE1 and ALE2 signal from the device control the
external address latches.

EBI SRAM

AD[7:0]

ALE1

D Q

G

D[7:0]

A[7:0]

A[15:8]

A[19:16]A[19:16]

A[15:8]
339
8331B–AVR–03/12

Atmel AVR XMEGA AU
Figure 27-8. Multiplexed SRAM LPC connection using ALE1 and ALE2.

27.7 SDRAM Configuration
Chip Select 3 on the EBI can be configured from SDRAM operation, and the EBI must be config-
ured as a three-port or four-port interface. The SDRAM can be configured for 4-bit or 8-bit data
bus, and four-Port interface must be used for 8-bit data bus. The SDRAM interface signals from
the EBI to the SDRAM is listed in Table 27-2 on page 340.

27.7.1 Supported Commands
The SDRAM commands that are supported by the EBI is listed in Table 27-3 on page 340.

EBI SRAM

A[15:8]/
AD[7:0]

ALE1

ALE2

D Q

G

D Q

G

D[7:0]

A[7:0]

A[15:8]

A[19:16]A[19:16]

Table 27-2. SDRAM Interface signals.

Signal Description

CS Chip select

WE Write enable

RAS Row address strobe

CAS Column address strobe

DQM Data mask signal/ output enable

CKE Clock enable

CLK Clock

BA[1:0] Bank address

A[12:0] Address bus

A[10] Precharge

D[7:0] Data bus

Table 27-3. Supported SDRAM commands.

Command Description

NOP No Operation

ACTIVE Activate the selected bank and select the row

READ Input the starting column address and begin the burst read operation

WRITE Input the starting column address and begin the burst write operation

PRECHARGE Deactivate the open row of selected bank or all banks
340
8331B–AVR–03/12

Atmel AVR XMEGA AU
27.7.2 Three-Port EBI Configuration
When three EBI ports are available, SDRAM can be connected with a three-Port EBI configura-
tion. When this is done only four-bit data bus is available, and any chip select must be controlled
from software using a general purpose I/O pin (Pxn).

Figure 27-9. Three-Port SDRAM configuration.

27.7.3 Four-Port EBI Configuration
When four EBI ports are available, SDRAM can be connected with a three-port or four-port EBI
configuration. When a four-port configuration is used, an eight-bit data bus is available, and all
four chip selects will be available.

Figure 27-10. Four-Port SDRAM configuration.

AUTO REFRESH Refresh one row of each bank

LOAD MODE Load mode register

SELF REFRESH Activate self refresh mode

Table 27-3. Supported SDRAM commands. (Continued)

EBI SDRAM

WE

CAS/RE

RAS

DQM

CLK

CKE

BA[1:0]

Pxn

D[3:0]

A[7:0]]

WE

CAS

RAS

DQM

CLK

CKE

CS

BA[1:0]

A[7:0]

D[3:0]

A[11:8] A[11:8]

EBI SDRAM

WE

CAS/RE

RAS

DQM

CLK

CKE

BA[1:0]

CS[3]

D[7:0]

A[7:0]]

WE

CAS

RAS

DQM

CLK

CKE

CS

BA[1:0]

A[7:0]

D[7:0]

A[11:8] A[11:8]
341
8331B–AVR–03/12

Atmel AVR XMEGA AU
27.7.4 Timing
The Clock Enable (CKE) signal is required for SDRAM when the EBI is clocked at 2x the CPU
clock speed.

27.7.5 Initialization
Configuring Chip Select 3 to SDRAM will enable the initialization of the SDRAM. The Load Mode
Register command is automatically issued at the end of the initialization. For correct information
to be loaded to the SDRAM, one of the following must be done:

– 1. Configure the SDRAM control registers before enabling chip select 3 to SDRAM

– 2. Issue a Load Mode Register command, and perform a dummy access after the
SDRAM is initialized

The SDRAM initialization is not interruptible by other EBI accesses.

27.7.6 Refresh
The EBI will automatically handle the SDRAM refresh as long as the refresh period is config-
ured. On average will one refresh command be issues at the interval given by the SDRAM
Refresh Period Register. The EBI can collect up to four refresh commands in case the interface
is busy on another chip select or in the middle of a read/write at the time a refresh should have
been performed.

27.8 Combined SRAM & SDRAM Configuration
Combined SRAM and SDRAM configuration enables the EBI to have both SDRAM and SRAM
connected at the same time. This is available only when using a four-port EBI interface. Figure
27-11 on page 343 shows the configuration, with all interface signals.
342
8331B–AVR–03/12

Atmel AVR XMEGA AU
Figure 27-11. Combined SRAM and SDRAM connection

27.9 I/O Pin and Pin-out Configuration
When the EBI is enabled, it will override the direction and/or value of the I/O pins where the EBI
data lines are placed. The EBI will also override the value, but not the direction, of the I/O pins
where the EBI address and control lines are placed. These I/O pins must be configured to output
when the EBI is used. I/O pins for unused EBI address and control lines can be used as normal
I/O pins or for other alternate functions on the pins.

For control signals that are active-low, the pin output value should be set to one (high). For con-
trol signals that are active-high, the pin output value should be set to zero (low). Address lines
do not require specific pin output value configuration. The chip select lines should have pull-up
resistors to ensure that they are kept high during power on and reset. If a chip select line is
active-high, a pull-down resistor should be used instead of a pull-up.

For more details on I/O pin configuration, refer to ”I/O Ports” on page 139.

The tables below summaries the actual port pin-out for the various SRAM and SDRAM configu-
rations, and shows required pins and pin usage. Refer to the device datasheet to see which
actual I/O ports are used as EBI PORT0-3 for a specific AVR XMEGA device.

EBI SDRAM

SRAM

WE

CAS/RE

RAS/ALE1

DQM

CLK

CKE

BA[1:0]

CS[3:0]

D[7:0]

A[7:0]/A[15:8]

WE

CAS

RAS

DQM

CLK

CKE

CS

BA[1:0]

A[7:0]

D[7:0]

D Q

G

A[11:8]/A[19:16] A[11:8]

A[7:0]

A[15:8]

D[7:0]

WE

CS

RE

A[19:16]
343
8331B–AVR–03/12

Atmel AVR XMEGA AU

Table 27-4. Pin-out SRAM.

PORT PIN SRAM
3PORT
ALE1

SRAM
3PORT
ALE12

SRAM
4PORT
ALE2

SRAM
4PORT
NOALE

PORT3 7:0 – – A[15:8] A[15:8]

PORT2 7:0 A[7:0]/
A[15:8]

A[7:0]/
A[15:8]/
A[23:16]

A[7:0]/

A[23:16]

A[7:0]

PORT1 7:0 D[7:0] D[7:0] D[7:0] D[7:0]

PORT0

7:4 CS[3:0]
(A[19:16])

CS[3:0] CS[3:0] CS[3:0]
(A[21:18])

3 – ALE2 ALE2 A17

2 ALE1 ALE1 – A16

1 RE RE RE RE

0 WE WE WE WE

Table 27-5. Pin-out SRAM LPC.

PORT PIN SRAM LPC
2PORT
ALE1

SRAM LPC
3PORT/4PORT
ALE1

SRAM
2/3/4PORT
ALE12

PORT3 7:0 – – –

PORT2 7:0 – A[15:8] –

PORT1 7:0 D[7:0]/
A[7:0]

D[7:0]/
A[7:0]

D[7:0]/
A[7:0]/
A[15:8]

PORT0

7:4 CS[3:0] CS[3:0]
(A[19:16])

CS[3:0]
(A[19:16])

3 – – ALE2

2 ALE1 ALE1 –

1 RE RE RE

0 WE WE WE
344
8331B–AVR–03/12

Atmel AVR XMEGA AU

Table 27-6. Pin-out for SRAM and SRAM LPC when combined with SDRAM (four-port only).

PORT PIN SRAM LPC
ALE1
(with SDRAM)

SRAM LPC
ALE12
(with SDRAM)

SRAM
ALE1
(with SDRAM)

SRAM
ALE12
(with SDRAM)

PORT3

7:4 CS[3:0]
(A[23:20])

CS[3:0]
(A[23:20])

CS[3:0]
(A[23:20])

CS[3:0]

3:0 A[15:8] A[19:16] A[19:16] –

PORT2 7:0 A[15:8] – A[7:0]/
A[15:8]

A[7:0]/
A[15:8]/
A[23:16]

PORT1 7:0 D[7:0]/
A[7:0]

D[7:0]/
A[7:0]/
A[15:8]

D[7:0] D[7:0]

PORT0

7:4 – – – –

3 – ALE2 – ALE2

2 ALE1 ALE1 ALE1 ALE1

1 RE RE RE RE

0 WE WE WE WE

Table 27-7. Pin-out SDRAM.

PORT PIN SDRAM
3PORT
4BIT

SDRAM
4PORT
4BIT

SDRAM
4PORT
8BIT

PORT3
7:4 – CS[3:0] CS[3:0]

3:0 A[11:8]

PORT2 7:0 A[7:0] A[7:0] A[7:0]

PORT1
7:4 A[11:8] A[11:8] D[7:4]

3:0 D[3:0] D[3:0] D[3:0]

PORT0

7 CLK CLK CLK

6 CKE CKE CKE

5 BA1 BA1 BA1

4 BA0 BA0 BA0

3 DQM DQM DQM

2 RAS RAS RAS

1 CAS CAS CAS

0 WE WE WE
345
8331B–AVR–03/12

Atmel AVR XMEGA AU
27.10 Register Description – EBI

27.10.1 CTRL – Control register

• Bit 7:6 – SDDATAW[1:0]: SDRAM Data Width Setting
These bits select the EBI SDRAM data width configuration, according to Table 27-8 on page
346.

Note: 1. Eight-bit data bus only available for four-port EBI interface

• Bit 5:4 – LPCMODE[1:0]: SRAM Low Pin Count Mode
These bits select the EBI SRAM LPC configuration according to Table 27-9 on page 346

• Bit 3:2 – SRMODE[1:0]: SRAM Mode
These bits selects the EBI SRAM configuration according to Table 27-10 on page 346.

Note: 1. ALE2 and NOALE only available with 4-port EBI interface

Bit 7 6 5 4 3 2 1 0

+0x00 SDDATAW[1:0] LPCMODE[1:0] SRMODE[1:0] IFMODE[1:0] CTRL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 27-8. SDRAM Mode.

SDDATAW[1:0] Group Configuration Description

00 4BIT Four-bit data bus

01 8BIT(1) Eight-bit data bus

10 – Reserved

11 – Reserved

Table 27-9. SRAM LPC Mode.

LPCMODE[1:0] Group Configuration ALE Description

00 ALE1 ALE1 Data multiplexed with Address byte 0

01 – – Reserved

10 ALE1 & 2 Data multiplexed with Address byte 0 and 1ALE12

11 – – Reserved

Table 27-10. SRAM Mode.

SRMODE[1:0] Group Configuration ALE Description

00 ALE1 ALE1 Address byte 0 and 1 multiplexed

01 ALE2(1) ALE2 Address byte 0 and 2 multiplexed

10 ALE12(1) ALE1 & 2 Address byte 0, 1 and 2 multiplexed

11 NOALE No ALE No address multiplexing
346
8331B–AVR–03/12

Atmel AVR XMEGA AU
• Bit 1:0 – IFMODE[1:0]: Interface Mode
These bits select EBI interface mode and the number of ports that should be enabled and over-
ridden for EBI, according to Table 27-11 on page 347.

27.10.2 SDRAMCTRLA – SDRAM Control register A

• Bit 7:4 – Reserved
These bits are unused and reserved for future use.

• Bit 3 – SDCAS: SDRAM CAS Latency
This bit sets the CAS latency as a number of ClkPER2 cycles. By default this bit is zero and the
CAS latency is two ClkPER2 cycles. When this bit is set to one, the CAS latency is three ClkPER2

cycles.

• Bit 2 – SDROW: SDRAM Row Bits
This bit sets the number of row bits used for the connected SDRAM. By default this bit is zero,
and the row bit setting is set to 11 row bits. When this bit is set to one, the row bit setting is set to
12 row bits.

• Bit 1:0 – SDCOL[1:0]: SDRAM Column Bits
These bits select the number of column bits that are used for the connected SDRAM according
to table.Table 27-14 on page 348.

Table 27-11. EBI Mode

IFMODE[1:0] Group Configuration Description

00 DISABLED EBI disabled

01 3PORT EBI enabled with three-port interface

10 4PORT EBI enabled with four-port interface

11 2PORT EBI enabled with two-port interface

Bit 7 6 5 4 3 2 1 0

+0x01 – – – – SDCAS SDROW SDCOL[1:0] SDRAMCTRLA

Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 27-12. SDRAM CAS latency.

SDROW Group Configuration Description

0 2CLK 2 ClkPER2 cycles delay

1 3CLK 3 ClkPER2 cycles delay

Table 27-13. SDRAM row bits.

SDROW Group Configuration Description

0 11BIT 11 row bits

1 12BIT 12 row bits
347
8331B–AVR–03/12

Atmel AVR XMEGA AU

27.10.3 REFRESH – SDRAM Refresh Period Register

• Bit 15:10 – Reserved
These bits are unused and reserved for future use.

• Bit 9:0 – REFRESH[9:0]: SDRAM Refresh Period
This register sets the refresh period as a number of ClkPER2 cycles. If the EBI is busy with
another external memory access at time of refresh, up to 4 refresh will be remembered and
given at the first available time.

27.10.4 INITDLY – SDRAM Initialization Delay register

• Bit 15:14 – Reserved
These bits are unused and reserved for future use.

Table 27-14. SDRAM column bits.

SDCOL[1:0] Group Configuration Description

00 8BIT 8 column bits

01 9BIT 9 column bits

10 10BIT 10 column bits

11 11BIT 11 column bits

Bit 7 6 5 4 3 2 1 0

+0x04 REFRESH[7:0] REFRESHL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x05 – – – – – – REFRESH[9-8] REFRESHH

Read/Write R R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x06 INITDLY[7:0] INTDLYL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x07 – – INITDLY[13-8] INITDLYH

Read/Write R R R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
348
8331B–AVR–03/12

Atmel AVR XMEGA AU
• Bit 13:0 – INITDLY[13:0]: SDRAM Initialization Delay
This register is used to delay the initialisation sequence after the controller is enabled until all
voltages are stabilized and the SDRAM clock has been running long enough to take the SDRAM
chip through its initialisation sequence. The initialisation sequence includes pre-charge all banks
to their idle state issuing an auto-refresh cycle and then loading the mode register. The setting in
this register is as a number of ClkPER2 cycles.

27.10.5 SDRAMCTRLB – SDRAM Control register B

• Bit 7:6 – MRDLY[1:0]: SDRAM Mode Register Delay
These bits select the delay between a LOAD MODE command and an ACTIVE command, in
number of ClkPER2 cycles, according to Table 27-15 on page 349.

• Bit 5:3 – ROWCYCDLY[2:0]: SDRAM Row Cycle Delay
These bits select the delay between a REFRESH and an ACTIVE command in number of
ClkPER2 cycles, according to Table 27-16 on page 349.

• Bit 2:0 – RPDLY[2:0]: SDRAM Row to Precharge Delay
RPDLY defines the delay between an Active command and a Precharge command in number of
ClkPER2 cycles, according to Table 27-17 on page 350.

Bit 7 6 5 4 3 2 1 0

+0x08 MRDLY[1:0] ROWCYCDLY[2:0] RPDLY[2:0] SDRAMCTRLB

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 27-15. SDRAM Load Mode to Active commnad delays settings.

MRDLY[1:0] Group Configuration Description

00 0CLK Zero ClkPER2 cycles delay

01 1CLK One ClkPER2 cycles delay

10 2CLK Two ClkPER2 cycles delay

11 3CLK Three ClkPER2 cycles delay

Table 27-16. SDRAM Row cycle delay settings.

ROWCYDLY[2:0] Group Configuration Description

000 0CLK Zero ClkPER2 cycles delay

001 1CLK One ClkPER2 cycles delay

010 2CLK Two ClkPER2 cycles delay

011 3CLK Three ClkPER2 cycles delay

100 4CLK Four ClkPER2 cycles delay

101 5CLK Five ClkPER2 cycles delay

110 6CLK Six ClkPER2 cycles delay

111 7CLK seven ClkPER2 cycles delay
349
8331B–AVR–03/12

Atmel AVR XMEGA AU
27.10.6 SDRAMCTRLC – SDRAM Control register C

• Bit 7:6 – WRDLY[1:0]: SDRAM Write Recovery Delay
These bits select the write recovery time in number of ClkPER2 cycles, according to Table 27-15
on page 349.

• Bit 5:3 – ESRDLY[2:0]: SDRAM Exit Self-refresh to Active Delay
This field defines the delay between CKE set high and an ACTIVE command in a number of
ClkPER2 cycles, according to Table 27-19 on page 351.

Table 27-17. SDRAM row to precharge delay settings

RPDLY[2:0] Group Configuration Description

000 0CLK Zero ClkPER2 cycles delay

001 1CLK One ClkPER2 cycles delay

010 2CLK Two ClkPER2 cycles delay

011 3CLK Three ClkPER2 cycles delay

100 4CLK Four ClkPER2 cycles delay

101 5CLK Five ClkPER2 cycles delay

110 6CLK Six ClkPER2 cycles delay

111 7CLK Seven ClkPER2 cycles delay

Bit 7 6 5 4 3 2 1 0

+0x09 WRDLY[1:0] ESRDLY[1:0] ROWCOLDLY[1:0] SDRAMCTRLC

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 27-18. SDRAM write recovery delay settings.

WRDLY[1:0] Group Configuration Description

00 0CLK Zero ClkPER2 cycles delay

01 1CLK One ClkPER2 cycles delay

10 2CLK Two ClkPER2 cycles delay

11 3CLK Three ClkPER2 cycles delay
350
8331B–AVR–03/12

Atmel AVR XMEGA AU

• Bit 2:0 – ROWCOLDLY[2:0]: SDRAM Row to Column Delay
This field defines the delay between an Active command and a Read/Write command as a num-
ber of ClkPER2 cycles, according to Table 27-20 on page 351.

27.11 Register Description – EBI Chip Select

27.11.1 CTRLA – Control register A

• Bit 7 – Reserved
This bit is unused and reserved for future use.

• Bit 6:2 – ASIZE[4:0]: Address Size
These bits select the address size for the Chip Select. This is the size of the block above the
base address.

Table 27-19. SDRAM exit self-refresh delay settings.

ESRDLY[2:0] Group Configuration Description

000 0CLK Zero ClkPER2 cycles delay

001 1CLK One ClkPER2 cycles delay

010 2CLK Two ClkPER2 cycles delay

011 3CLK Three ClkPER2 cycles delay

100 4CLK Four ClkPER2 cycles delay

101 5CLK Five ClkPER2 cycles delay

110 6CLK Six ClkPER2 cycles delay

111 7CLK Seven ClkPER2 cycles delay

Table 27-20. SDRAM row column delay settings

ROWCOLDLY[2:0] Group Configuration Description

000 0CLK Zero ClkPER2 cycles delay

001 1CLK One ClkPER2 cycles delay

010 2CLK Two ClkPER2 cycles delay

011 3CLK Three ClkPER2 cycles delay

100 4CLK Four ClkPER2 cycles delay

101 5CLK Five ClkPER2 cycles delay

110 6CLK Six ClkPER2 cycles delay

111 7CLK seven ClkPER2 cycles delay

Bit 7 6 5 4 3 2 1 0

+0x00 – ASIZE[4:0] MODE[1:0] CTRLA

Read/Write R R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
351
8331B–AVR–03/12

Atmel AVR XMEGA AU
Note: 1. Entire available data space used.

• Bit 1:0 – MODE[1:0]: Chip Select Mode
These bits select the Chip Select Mode and decide what type of interface is used for the external
memory or peripheral according to Table 27-22 on page 352.

Note: 1. SDRAM can only be selected for CS3

Table 27-21. Address size encoding

ASIZE[4:0] Group Configuration Address Size Address Lines Compared

00000 256B 256 bytes ADDR[23:8]

00001 512B 512 bytes ADDR[23:9]

00010 1K 1KB ADDR[23:10]

00011 2K 2KB ADDR[23:11]

00100 4K 4KB ADDR[23:12]

00101 8K 8KB ADDR[23:13]

00110 16K 16KB ADDR[23:14

00111 32K 32KB ADDR[23:15]

01000 64K 64KB ADDR[23:16]

01001 128K 128KB ADDR[23:17]

01010 256K 256KB ADDR[23:18]

01011 512K 512KB ADDR[23:19]

01100 1M 1MB ADDR[23:20]

01101 2M 2MB ADDR[23:21]

01110 4M 4MB ADDR[23:22]

01111 8M 8MB ADDR[23]

10000 16M 16MB(1) –

Other – – Reserved

Table 27-22. Chip Select Mode selection

MODE[1:0] Group Configuration Description

00 DISABLE Chip select disabled

01 SRAM Enable chip select for SRAM

10 LPC Enable chip select for SRAM LPC

11 SDRAM Enable chip select for SDRAM(1)
352
8331B–AVR–03/12

Atmel AVR XMEGA AU
27.11.2 CTRLB (SRAM) – Control register B
The configuration options for this register depend on the chip select mode configuration. The
register description below is valid when the chip select mode is configured for SRAM or SRAM
LPC.

• Bit 7:3 – Reserved
These bits are unused and reserved for future use.

• Bit 2:0 – SRWS[2:0]: SRAM Wait State
These bits select the number of wait states for SRAM and SRAM LPC access as a number of
ClkPER2 cycles, according to Table 27-23 on page 353.

27.11.3 CTRLB (SDRAM) – Control register B
The configuration options for this register depend on the chip select mode configuration. The
register description below is valid for CS3 when the chip select mode is configured for SDRAM.

• Bit 7 – SDINITDONE: SDRAM Initialization Complete
This flag is set at the end of the SDRAM initialization sequence. The flag will remain set as long
as the EBI is enabled and the Chip Select is configured for SDRAM.

• Bit 6:3 – Reserved
These bits are unused and reserved for future use.

• Bit 2 – SDSREN: SDRAM Self-refresh Enable
When this bit is written to one the EBI controller will send a Self-refresh command to the
SDRAM. For leaving the self refresh mode, the bit must be written to zero.

Bit 7 6 5 4 3 2 1 0

+0x01 – – – – – SRWS[2:0] CTRLB

Read/Write R R R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 27-23. Wait State selection

SRWS[2:0] Group Configuration Description

000 0CLK Zero ClkPER2 cycles wait state

001 1CLK One ClkPER2 cycles wait state

010 2CLK Two ClkPER2 cycles wait state

011 3CLK Three ClkPER2 cycles wait state

100 4CLK Four ClkPER2 cycles wait state

101 5CLK Five ClkPER2 cycles wait state

110 6CLK Six ClkPER2 cycles wait state

111 7CLK Seven ClkPER2 cycles wait state

Bit 7 6 5 4 3 2 1 0

+0x01 SDINITDONE – – – – SDREN SDMODE[1:0] CTRLB

Read/Write R/W R R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
353
8331B–AVR–03/12

Atmel AVR XMEGA AU
• Bit 1:0 SDMODE[1:0]: SDRAM Mode
These bits select the mode when accessing SDRAM according to Table 27-24 on page 354.

27.11.4 BASEADDR – Base Address register

• Bit 15:4 – BASEADDR[23:12]: Chip Select Base Address
The base address is the lowest address in the address space enabled by a chip select. Together
with the Chip Select Address Size (ASIZE) setting in “CTRLA - Chip Select Control Register A”,
this gives the address space for the Chip Select.

• Bit 3:0 – Reserved
These bits are unused and reserved for future use.

Table 27-24. SDRAM mode

SDMODE[1:0] Group Configuration Description

00 NORMAL Normal mode - access to the SDRAM is decoded normally

01 LOAD
Load Mode - the EBI issues a Load Mode Register
command when the SDRAM is accessed

10 – Reserved

11 – Reserved

Bit 7 6 5 4 3 2 1 0

+0x02 BASEADDR[15:12] – – – – BASEADDRL

Read/Write R/W R/W R/W R/W R R R R

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x03 BASEADDR[23:16] BASEADDRL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
354
8331B–AVR–03/12

Atmel AVR XMEGA AU
27.12 Register Summary - EBI

27.13 Register Summary - EBI Chip Select

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page
+0x00 CTRL SDDATAW[1:0] LPCMODE[1:0] SRMODE[1:0] IFMODE[1:0] 346

+0x01 SDRAMCTRLA – – – – SDCAS SDROW SDCOL[1:0] 347

+0x02 Reserved – – – – – – – –

+0x03 Reserved – – – – – – – –

+0x04 REFRESHL SDRAM Refresh Period Low Byte 348

+0x05 REFRESHH – – – – – – SDRAM Refresh Period High 348

+0x06 INITDLYL SDRAM Initialization Time Low Byte 348

+0x07 INITDLYH – – SDRAM Initialization Time High Byte 348

+0x08 SDRAMCTRLB MRDLY[1:0] ROWCYCDLY[[2:0] RPDLY[2:0] 349

+0x09 SDRAMCTRLC WRDLY[1:0] ESRDLY[2:0] ROWCOLDLY[2:0] 350

+0x0A Reserved – – – – – – – –

+0x0B Reserved – – – – – – – –

+0x0C Reserved – – – – – – – –

+0x0D Reserved – – – – – – – –

+0x0E Reserved – – – – – – – –

+0x0F Reserved – – – – – – – –

+0x10 CS0 Chip Select 0 Offset Address

+0x14 CS1 Chip Select 1 Offset Address

+0x18 CS2 Chip Select 2 Offset Address

+0x1C CS3 Chip Select 3 Offset Address

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page
+0x00 CTRLA – ASIZE[4:0] MODE[1:0] 351

+0x01 CTRLB (SRAM) – – – – – SRWS[2:0] 353

(SDRAM) SDINITDONE – – – – SDSREN SDMODE[1:0] 353

+0x02 BASEADDRL Chip Select Base Address Low Byte – – – – 354

+0x03 BASEADDRH Chip Select Base Address High Byte 354
355
8331B–AVR–03/12

Atmel AVR XMEGA AU
28. ADC – Analog-to-Digital Converter

28.1 Features
• 12-bit resolution
• Up to two million samples per second

– Two inputs can be sampled simultaneously using ADC and 1x gain stage
– Four inputs can be sampled within 1.5µs
– Down to 2.5µs conversion time with 8-bit resolution
– Down to 3.5µs conversion time with 12-bit resolution

• Differential and single-ended input
– Up to 16 single-ended inputs
– 16x4 differential inputs without gain
– 8x4 differential input with gain

• Built-in differential gain stage
– 1/2x, 1x, 2x, 4x, 8x, 16x, 32x, and 64x gain options

• Single, continuous and scan conversion options
• Four internal inputs

– Internal temperature sensor
– DAC output
– VCC voltage divided by 10
– 1.1V bandgap voltage

• Four conversion channels with individual input control and result registers
– Enable four parallel configurations and results

• Internal and external reference options
• Compare function for accurate monitoring of user defined thresholds
• Optional event triggered conversion for accurate timing
• Optional DMA transfer of conversion results
• Optional interrupt/event on compare result

28.2 Overview
The ADC converts analog signals to digital values. The ADC has 12-bit resolution and is capable
of converting up to two million samples per second (MSPS). The input selection is flexible, and
both single-ended and differential measurements can be done. For differential measurements,
an optional gain stage is available to increase the dynamic range. In addition, several internal
signal inputs are available. The ADC can provide both signed and unsigned results.

This is a pipelined ADC that consists of several consecutive stages. The pipelined design allows
a high sample rate at a low system clock frequency. It also means that a new input can be sam-
pled and a new ADC conversion started while other ADC conversions are still ongoing. This
removes dependencies between sample rate and propagation delay.

The ADC has four conversion channels (0-3) with individual input selection, result registers, and
conversion start control. The ADC can then keep and use four parallel configurations and
results, and this will ease use for applications with high data throughput or for multiple modules
using the ADC independently. It is possible to use DMA to move ADC results directly to memory
or peripherals when conversions are done.

Both internal and external reference voltages can be used. An integrated temperature sensor is
available for use with the ADC. The output from the DAC, VCC/10 and the bandgap voltage can
also be measured by the ADC.
356
8331B–AVR–03/12

Atmel AVR XMEGA AU
The ADC has a compare function for accurate monitoring of user defined thresholds with mini-
mum software intervention required.

Figure 28-1. ADC overview.

28.3 Input Sources
Input sources are the voltage inputs that the ADC can measure and convert. Four types of mea-
surements can be selected:

• Differential input

• Differential input with gain

• Single-ended input

• Internal input

The input pins are used for single-ended and differential input, while the internal inputs are
directly available inside the device. In devices with two ADCs, PORTA pins can be input to
ADCA and PORTB pins can be input to ADCB. For AVR XMEGA devices with only one ADC,
input pins may be available for ADCA on both PORTA and PORTB.

The ADC is differential, and so for single-ended measurements the negative input is connected
to a fixed internal value. The four types of measurements and their corresponding input options
are shown in Figure 28-2 on page 358 to Figure 28-6 on page 360.

28.3.1 Differential Input
When differential input is enabled, all input pins can be selected as positive input, and input pins
0 to 3 can be selected as negative input. The ADC must be in signed mode when differential
input is used.

Internal 1.00V
Internal VCC/1.6V

AREFA
AREFB

S&H Σ

 ADC DAC

 2x

2 bits

VIN VOUT

Stage
1

Stage
2

Stage
12

Digital Correction Logic

2 2 2

Internal VCC/2

CHn.CTRL REFCTRL
CHn.MUXCTRL

EVCTRLCTRLA
CTRLB

Enable
Start

Mode
Resolution

Action
Select

CH1 Result

CH0 Result

CH2 Result

Compare

<
>

Threshold
(Int Req)

CH3 Result

VINP

VINN

Internal
signals

Internal
signals

ADC0

ADC7

ADC4

ADC7

ADC0

ADC3

•••

Int. signals

Int. signals

½x - 64x
•••

•••

ADC0

ADC15

•••
357
8331B–AVR–03/12

Atmel AVR XMEGA AU
Figure 28-2. Differential measurement without gain.

28.3.2 Differential Input with Gain
When differential input with gain is enabled, all input pins can be selected as positive input, and
input pins 4 to 7 can be selected as negative input. When the gain stage is used, the differential
input is first sampled and amplified by the gain stage before the result is fed into the ADC. The
ADC must be in signed mode when differential input with gain is used.

The gain is selectable to 1/2x, 1x, 2x, 4x, 8x, 16x, 32x, and 64x gain.

Figure 28-3. Differential measurement with gain.

28.3.3 Single-ended Input
For single-ended measurements, all input pins can be used as inputs. Single-ended measure-
ments can be done in both signed and unsigned mode.

The negative input is connected to internal ground in signed mode.

 +

-
ADC0

ADC3

ADC0

ADC15

•
•
•

•
•
•

GND
INTGND

 +

-
ADC4

ADC7

ADC0

ADC7

•
•
•

•
•
•

GND
INTGND

½x - 64x
358
8331B–AVR–03/12

Atmel AVR XMEGA AU
Figure 28-4. Single-ended measurement in signed mode.

In unsigned mode, the negative input is connected to half of the voltage reference (VREF) volt-
age minus a fixed offset. The nominal value for the offset is:

Since the ADC is differential, the input range is VREF to zero for the positive single-ended input.
The offset enables the ADC to measure zero crossing in unsigned mode, and allows for calibra-
tion of any positive offset when the internal ground in the device is higher than the external
ground. See Figure 28-11 on page 362 for details.

Figure 28-5. Single-ended measurement in unsigned mode.

28.3.4 Internal Inputs
These internal signals can be measured or used by the ADC.

• Temperature sensor

• Bandgap voltage

• VCC scaled

• DAC output

• Pad and Internal Ground

The temperature sensor gives an output voltage that increases linearly with the internal temper-
ature of the device. One or more calibration points are needed to compute the temperature from
a measurement of the temperature sensor. The temperature sensor is calibrated at one point in
production test, and the result is stored to TEMPESENSE0 and TEMPSENSE1 in the production
signature row. For more calibration condition details, refer to the device datasheet.

The bandgap voltage is an accurate internal voltage reference.

VCC can be measured directly by scaling it down by a factor of 10 before the ADC input. Thus, a
VCC of 1.8V will be measured as 0.18V, and VCC of 3.6V will be measured as 0.36V. This
enables easy measurement of the VCC voltage.

The internal signals need to be enabled before they can be measured. Refer to their manual
sections for Bandgap and DAC for details of how to enable these. The sample rate for the inter-

-

ADC0

ADC15

•
•
•

-

ΔV VREF 0.05×=

ADC0

ADC15 VVREF
Δ−

2

+

-

•
•
•

•
•
•

359
8331B–AVR–03/12

Atmel AVR XMEGA AU
nal signals is lower than that of the ADC. Refer to the ADC characteristics in the device
datasheets for details.

For differential measurement Pad Ground (Gnd) and Internal Gnd can be selected as negative
input. Pad Gnd is the gnd level on the pin and identical or very close to the external gnd. Internal
Gnd is the internal device gnd level.

Internal Gnd is used as the negative input when other internal signals are measured in single-
ended signed mode.

Figure 28-6. Internal measurements in single-ended signed mode.

To measure the internal signals in unsigned mode, the negative input is connected to a fixed
value given by the formula below, which is half of the voltage reference (VREF) minus a fixed
offset, as it is for single-ended unsigned input. Refer to Figure 28-11 on page 362 for details.

VINN = VREF/2 - ΔV

Figure 28-7. Internal measurements in unsigned mode.

28.4 ADC Channels
To facilitate the maximum utilization of the ADC, it has four separate pairs of MUX control regis-
ters with corresponding result registers. Each pair forms an ADC channel. See Figure 28-1 on
page 357. The ADC can then keep and use four parallel configurations of input sources and trig-
gers. Each channel has dedicated result register, events and interrupts, and DMA triggers.

As an example of the ADC channel usage, one channel can be setup for single-ended measure-
ments triggered by an event channel, the second channel can measure a differential input using
a different event, and the two last channels can measure two other input sources started by the
application software.

All the ADC channels use the same ADC pipeline for the conversions, and the pipeline enables
a new conversion to be started for each ADC clock cycle. This means that multiple ADC mea-
surements from different channels can be converted simultaneously and independently. The
channels' result registers are individually updated and are unaffected by conversions on other
channels. This can help reduce software complexity by allowing different software modules to
start conversions and read conversion results fully independently of each other.

 +

 ADC
-

TEMP REF

VCC SCALED
DAC

BANDGAP REF

TEMP REF

VCC SCALED
BANDGAP REF +

-VVREF
Δ−

2

DAC
360
8331B–AVR–03/12

Atmel AVR XMEGA AU
28.5 Voltage Reference Selection
The following voltages can be used as the reference voltage (VREF) for the ADC:

• Accurate internal 1.00V voltage generated from the bandgap
• Internal VCC/1.6V voltage
• Internal VCC/2V voltage
• External voltage applied to AREF pin on PORTA
• External voltage applied to AREF pin on PORTB

Figure 28-8. ADC voltage reference selection

28.6 Conversion Result
The result of the analog-to-digital conversion is written to the corresponding channel result regis-
ters. The ADC is either in signed or unsigned mode. This setting is global for the ADC and all
ADC channels.

In signed mode, negative and positive results are generated. Signed mode must be used when
any of the ADC channels are set up for differential measurements. In unsigned mode, only sin-
gle-ended or internal signals can be measured. With 12-bit resolution, the TOP value of a signed
result is 2047, and the results will be in the range -2048 to +2047 (0xF800 - 0x07FF).

The ADC transfer function can be written as:

VINP and VINN are the positive and negative inputs to the ADC.

For differential measurements, GAIN is 1/2 to 64. For single-ended and internal measurements,
GAIN is always 1 and VINP is the internal ground.

In unsigned mode, only positive results are generated. The TOP value of an unsigned result is
4095, and the results will be in the range 0 to +4095 (0x0 - 0x0FFF).

The ADC transfer functions can be written as:

VINP is the single-ended or internal input.

The ADC can be configured to generate either an 8-bit or a 12-bit result. A result with lower res-
olution will be available faster. See the ”ADC Clock and Conversion Timing” on page 363 for a
description on the propagation delay.

The result registers are 16 bits wide, and data are stored as right adjusted 16-bit values. Right
adjusted means that the eight least-significant bits (lsb) are found in the low byte. A 12-bit result

Internal 1.00V

AREFB
AREFA

Internal VCC/1.6V
VREFInternal VCC/2.0V

RES VINP - VINN
VREF

--------------------------------- GAIN TOP +1()⋅ ⋅=

RES VINP - (-ΔV)
VREF

---------------------------------- TOP +1()⋅=
361
8331B–AVR–03/12

Atmel AVR XMEGA AU
can be represented either left or right adjusted. Left adjusted means that the eight most-signifi-
cant bits (msb) are found in the high byte.

When the ADC is in signed mode, the msb represents the sign bit. In 12-bit right adjusted mode,
the sign bit (bit 11) is padded to bits 12-15 to create a signed 16-bit number directly. In 8-bit
mode, the sign bit (bit 7) is padded to the entire high byte.

Figure 28-9 on page 362 to Figure 28-11 on page 362 show the different input options, the sig-
nal input range, and the result representation with 12-bit right adjusted mode.

Figure 28-9. Signed differential input (with gain), input range, and result representation.

Figure 28-10. Signed single-ended and internal input, input range, and result representation.

Figure 28-11. Unsigned single-ended and internal input, input range, and result representation.

2047
2046
2045

...
3
2
1
0
-1

...
-2045
-2046
-2047
-2048

7FF
7FE
7FD
...
3
2
1
0

FFF
FFE
...

803
802
801
800

Dec Hex
0111 1111 1111
0111 1111 1110
0111 1111 1101

...
0000 0000 0011
0000 0000 0010
0000 0000 0001
0000 0000 0000
1111 1111 1111
1111 1111 1110

...
1000 0000 0011
1000 0000 0010
1000 0000 0001
1000 0000 0000

Binary
0000 0111 1111 1111
0000 0111 1111 1110
0000 0111 1111 1101

...
0000 0000 0000 0011
0000 0000 0000 0010
0000 0000 0000 0001
0000 0000 0000 0000
1111 1111 1111 1111
1111 1111 1111 1110

...
1111 1000 0000 0011
1111 1000 0000 0010
1111 1000 0000 0001
1111 1000 0000 0000

16-bit result registerVREF
GAIN

-VREF
GAIN

0 V

VINN

RES

VINP

-2

2047
2046
2045

...
3
2
1
0
-1
-2
...

-2045
-2046
-2047
-2048

7FF
7FE
7FD
...
3
2
1
0

FFF
FFE
...

803
802
801
800

Dec Hex
0111 1111 1111
0111 1111 1110
0111 1111 1101

...
0000 0000 0011
0000 0000 0010
0000 0000 0001
0000 0000 0000
1111 1111 1111
1111 1111 1110

...
1000 0000 0011
1000 0000 0010
1000 0000 0001
1000 0000 0000

Binary
0000 0111 1111 1111
0000 0111 1111 1110
0000 0111 1111 1101

...
0000 0000 0000 0011
0000 0000 0000 0010
0000 0000 0000 0001
0000 0000 0000 0000
1111 1111 1111 1111
1111 1111 1111 1110

...
1111 1000 0000 0011
1111 1000 0000 0010
1111 1000 0000 0001
1111 1000 0000 0000

16-bit result registerVREF

-VREF

0 V

VINP

VINN = GND

4095
4094
4093

...
203
202
201
200

FFF
FFE
FFD

...
0CB
0CA
0C9
0C8

Dec Hex
1111 1111 1111
1111 1111 1110
1111 1111 1101

...
0000 1100 1011
0000 1100 1010
0000 1100 1001
0000 1100 1000

Binary
0000 1111 1111 1111
0000 1111 1111 1110
0000 1111 1111 1101

...
0000 0000 1100 1011
0000 0000 1100 1010
0000 0000 1100 1001
0000 0000 1100 1000

16-bit result register

VVREFVINN Δ−=
2GND

VVREF Δ−

VINP

...
0 0 0000 0000 0000 0000 0000 0000 0000
362
8331B–AVR–03/12

Atmel AVR XMEGA AU
28.7 Compare Function
The ADC has a built-in 12-bit compare function. The ADC compare register can hold a 12-bit
value that represents a threshold voltage. Each ADC channel can be configured to automatically
compare its result with this compare value to give an interrupt or event only when the result is
above or below the threshold.

All four ADC channels share the same compare register.

28.8 Starting a Conversion
Before a conversion is started, the input source must be selected for one or more ADC chan-
nels. An ADC conversion for a channel can be started either by the application software writing
to the start conversion bit for the channel or from any events in the event system. It is possible to
write the start conversion bit for several channels at the same time, or use one event to trigger
conversions on several channels at the same time. This makes it possible to scan several or all
channels from one event. The scan will start from the lowest channel number.

28.8.1 Input Source Scan
For ADC Channel 0 it is possible to select a range of consecutive input sources that is automati-
cally scanned and measured when a conversion is started. This is done by setting the first
(lowest) positive ADC channel input using the MUX control register, and a number of consecu-
tive positive input sources. When a conversion is started, the first selected input source is
measured and converted, then the positive input source selection is incremented after each con-
version until it reaches the specified number of sources to scan.

28.9 ADC Clock and Conversion Timing
The ADC is clocked from the peripheral clock. The ADC can prescale the peripheral clock to pro-
vide an ADC Clock (clkADC) that matches the application requirements and is within the
operating range of the ADC.

Figure 28-12. ADC prescaler.

The maximum ADC sample rate is given by the he ADC clock frequency (fADC). The ADC can
sample a new measurement on every ADC clock cycle.

The propagation delay of an ADC measurement is given by:

9-bit ADC Prescaler

ClkADC

PRESCALER[2:0]

C
LK

/4

C
LK

/8

C
LK

/1
6

C
LK

/3
2

C
LK

/6
4

C
LK

/1
28

ClkPER

C
LK

/2
56

C
LK

/5
12

Sample Rate fADC=

Propagation Delay =
1 RESOLUTION

2
--------------------------------------- GAIN+ +

fADC
--
363
8331B–AVR–03/12

Atmel AVR XMEGA AU
RESOLUTION is the resolution, 8 or 12 bits. The propagation delay will increase by one extra
ADC clock cycle if the gain stage (GAIN) is used.

The propagation delay is longer than one ADC clock cycle, but the pipelined design means that
the sample rate is limited not by the propagation delay, but by the ADC clock rate.

The most-significant bit (msb) of the result is converted first, and the rest of the bits are con-
verted during the next three (for 8-bit results) or five (for 12-bit results) ADC clock cycles.
Converting one bit takes a half ADC clock period. During the last cycle, the result is prepared
before the interrupt flag is set and the result is available in the result register for readout.

28.9.1 Single Conversion without Gain
Figure 28-13 on page 364 shows the ADC timing for a single conversion without gain. The writ-
ing of the start conversion bit, or the event triggering the conversion (START), must occur at
least one peripheral clock cycle before the ADC clock cycle on which the conversion starts (indi-
cated with the grey slope of the START trigger).

The input source is sampled in the first half of the first cycle.

Figure 28-13. ADC timing for one single conversion without gain.

28.9.2 Single Conversion with Gain
Figure 28-14 on page 365 shows the ADC timing for one single conversion with gain. As seen in
the ”Overview” on page 356, the gain stage is placed prior to the actual ADC. The gain stage will
sample and amplify the input source before the ADC samples it, and converts the amplified
value. Compared to a single conversion without gain, this adds one ADC clock cycle (between
START and ADC sample) for the gain stage sample and amplify. The sample time for the gain
stage is one half ADC clock cycle.

CLKADC

START

ADC SAMPLE

IF

CONVERTING BIT 10 9 8 7 6 5 4 3 2 1 LSB

1 2 3 4 5 6 7 8

MSB
364
8331B–AVR–03/12

Atmel AVR XMEGA AU
Figure 28-14. ADC timing for one single conversion with gain.

28.9.3 Single Conversions on Two ADC Channels
Figure 28-15 on page 365 shows the ADC timing for single conversions on two channels. The
pipelined design enables the second conversion to start on the next ADC clock cycle after the
first conversion has started. In this example, both conversions take place at the same time, but
the conversion on ADC channel 1(CH1) does not start until the ADC samples and performs con-
version on the msb on channel 0 (CH0).

Figure 28-15. ADC timing for single conversions on two ADC channels.

28.9.4 Single Conversions on Two ADC Channels, CH0 with Gain
Figure 28-16 on page 366 shows the conversion timing for single conversions on two ADC chan-
nels where ADC channel 0 uses the gain stage. As the gain stage introduces one addition cycle
for the gain sample and amplify, the sample for ADC channel 1 is also delayed one ADC clock
cycle, until the ADC sample and msb conversion is done for ADC channel 0.

ADC SAMPLE

CONVERTING BIT

START

IF

GAINSTAGE SAMPLE

GAINSTAGE AMPLIFY

MSB 10 9 8 7 6 5 4 3 2 1 LSB

CLKADC

1 2 3 4 5 6 7 8 9

CLKADC

START CH1

ADC SAMPLE

IF CH1

START CH0

IF CH0

CONVERTING BIT CH0

CONVERTING BIT CH1

MSB 10 9 8 7 6 5 4 3 2 1 LSB

1 2 3 4 5 6 7 8 9

MSB 10 9 8 7 6 5 4 3 2 1 LSB
365
8331B–AVR–03/12

Atmel AVR XMEGA AU
Figure 28-16. ADC timing for single conversion on two ADC channels, CH0 with gain.

28.9.5 Single Conversions on Two ADC Channels, CH1 with Gain
Figure 28-17 on page 366 shows the conversion timing for single conversions on two ADC chan-
nels where ADC channel 1 uses the gain stage.

Figure 28-17. ADC timing for single conversion on two ADC channels, CH1 with gain.

28.9.6 Free Running Mode on Two ADC Channels with Gain
Figure 28-18 on page 367 shows the conversion timing for all four ADC channels in free running
mode, CH0 and CH1 without gain and CH2 and CH3 with gain. When set up in free running
mode, an ADC channel will continuously sample and do new conversions. In this example, all
ADC channels are triggered at the same time, and each ADC channel samples and start con-
verting as soon as the previous ADC channel is done with its sample and msb conversion. After
four ADC clock cycles, all ADC channels have done the first sample and started the first conver-
sion, and each ADC channels can then do the sample conversion start for their second
conversion. After eight (for 12-bit mode) ADC clock cycles, the first conversion is done for ADC
channel 0, and the results for the rest of the ADC channels are available in subsequent ADC
clock cycles. After the next clock cycle (in cycle 10), the result from the second ADC channel is

START CH1, wo/GAIN

ADC SAMPLE

IF CH1

START CH0, w/GAIN

IF CH0

GAINSTAGE SAMPLE

GAINSTAGE AMPLIFY

CONVERTING BIT CH0

CONVERTING BIT CH1

MSB 10 9 8 7 6 5 4 3 2 1 LSB

MSB 10 9 8 7 6 5 4 3 2 1 LSB

CLKADC

1 2 3 4 5 6 7 8 9 10

START CH1, w/GAIN

ADC SAMPLE

IF CH1

CONVERTING BIT CH0

START CH0, wo/GAIN

IF CH0

CONVERTING BIT CH1

GAINSTAGE SAMPLE

GAINSTAGE AMPLIFY

CLKADC

1 2 3 4 5 6 7 8 9 10

MSB 10 9 8 7 6 5 4 3 2 1 LSB

MSB 10 9 8 7 6 5 4 3 2 1 LSB
366
8331B–AVR–03/12

Atmel AVR XMEGA AU
done and available, and so on. In this mode, up to eight conversions are ongoing at the same
time.

Figure 28-18. ADC timing for free running mode.

28.10 ADC Input Model
The voltage input must charge the sample and hold (S/H) capacitor in the ADC in order to
achieve maximum accuracy. Seen externally, the ADC input consists of an input resistance
(Rin = Rchannel + Rswitch) and the S/H capacitor (Csample). Figure 28-19 on page 367 and Figure 28-
20 on page 367 show the ADC input channels.

Figure 28-19. ADC input for single-ended measurements.

Figure 28-20. ADC input for differential measurements and differential measurements with gain.

START CH1, wo/GAIN

ADC SAMPLE

START CH0, wo/GAIN

GAINSTAGE SAMPLE

GAINSTAGE AMPLIFY

START CH1, w/GAIN

START CH0, w/GAIN

CONV COMPLETE 0 1

CLKADC

1 2 3 4 5 6 7 8 9 10

2 3

2 3

2 3

2 3

0 1 2 3 0 1 2 3 0

Rchannel Rswitch CSample

VCC/2

Positive
input

Rchannel Rswitch CSample

VCC/2

Positive
input

Rchannel Rswitch

CSample
Negative

input
367
8331B–AVR–03/12

Atmel AVR XMEGA AU
In order to achieve n bits of accuracy, the source output resistance, Rsource, must be less than
the ADC input resistance on a pin:

where the ADC sample time, TS is one-half the ADC clock cycle given by:

For details on Rchannel, Rswitch, and Csample, refer to the ADC and ADC gain stage electrical char-
acteristic in the device datasheet.

28.10.1 Gain Stage Impedance mode
To support applications with very high source output resistance, the gain stage has a high
impedance mode. In this mode the charge on the S/H capacitor is kept after each sample, and
the S/H capacitor can be fully charged by doing multiple samples on the same input channel.
When low impedance mode is used, the S/H capacitor charge is flushed after each sample.

28.11 DMA Transfer
The DMA controller can be used to transfer ADC conversion results to memory or other periph-
erals. A new conversion result for any of the ADC channels can trigger a DMA transaction for
one or several ADC channels. Refer to ”DMAC - Direct Memory Access Controller” on page 54
for more details on DMA transfers.

28.12 Interrupts and Events
The ADC can generate interrupt requests and events. Each ADC channel has individual inter-
rupt settings and interrupt vectors. Interrupt requests and events can be generated when an
ADC conversion is complete or when an ADC measurement is above or below the ADC com-
pare register value.

28.13 Calibration
The ADC has built-in linearity calibration. The value from the production test calibration must be
loaded from the signature row and into the ADC calibration register from software to achieve
specified accuracy. User calibration of the linearity is not needed, hence not possible. Offset and
gain calibration must be done in software.

28.14 Channel Priority
Since the peripheral clock is faster than the ADC clock, it is possible to set the start conversion
bit for several ADC channels within the same ADC clock period. Events may also trigger conver-
sions on several ADC channels and give the same scenario. In this case, the ADC channel with
the lowest number will be prioritized. This is shown the timing diagrams in ”ADC Clock and Con-
version Timing” on page 363.

Rsource
Ts

Csample 2n 1+()ln⋅
--- Rchannel– Rswitch–≤

Ts
1

2 f⋅ ADC
-------------------≤
368
8331B–AVR–03/12

Atmel AVR XMEGA AU
28.15 Synchronous Sampling
The ADC can be configured to do synchronous sampling in three different ways.

1. Sample two input channels at the same time

2. Sample two ADCs at the same time

3. Sample on external trigger

28.15.1 Synchronous sampling of two ADC inputs
The ADC supports sampling of two input channels at the same time. This is achieved by setting
up channel n to use 1x gain and channel n+1 to not use gain. The converted result from the
channel using gain will be ready one ADC clock cycle after the other channel. See ”Single Con-
versions on Two ADC Channels, CH1 with Gain” on page 366 for detailed timing diagram.

28.15.2 Synchronous sampling on event
Starting an ADC conversion can cause an unknown delay between the start trigger or event and
the actual conversion start, since conversions of higher priority ADC channels may be pending,
or since the peripheral clock is faster than the ADC clock. To start an ADC conversion immedi-
ately on an incoming event, it is possible to flush the ADC of all measurements, reset the ADC
clock, and start the conversion at the next peripheral clock cycle (which then will also be the next
ADC clock cycle). If this is done, all ongoing conversions in the ADC pipeline will be lost.

The ADC can be flushed from software, or an incoming event can do this automatically. When
this function is used, the time between each conversion start trigger must be longer than the
ADC propagation delay to ensure that one conversion is finished before the ADC pipeline is
flushed and the next conversion is started.

It is also important to clear pending events or start ADC conversion commands before doing a
flush. If not, pending conversions will start immediately after the flush.

28.15.3 Synchronous sampling of two ADCs
In devices with two ADC peripherals, it is possible to start two ADC samples synchronously in
the two ADCs by using the same event channel to trigger both ADC.
369
8331B–AVR–03/12

Atmel AVR XMEGA AU
28.16 Register Description – ADC

28.16.1 CTRLA – Control register A

• Bit 7:6 – DMASEL[1:0]: DMA Request Selection
To allow one DMA channel to serve more than one ADC channel, the DMA request from the
channels can be combined into a common DMA request. See Table 28-1 for details.

• Bit 5:2 – CHSTART[3:0]: Channel Start Single Conversion
Setting any of these bits will start a conversion on the corresponding ADC channel. Setting sev-
eral bits at the same time will start conversions on all selected ADC channels, starting with the
channel with the lowest number. These bits are cleared by hardware when the conversion has
started.

• Bit 1 – FLUSH: Pipeline Flush:
Setting this bit will flush the ADC pipeline. When this is done, the ADC clock is restarted on the
next peripheral clock edge, and all conversions in progress are aborted and lost.

After the flush and the ADC clock restart, the ADC will resume where it left off; i.e., if a channel
sweep was in progress or any conversions were pending, these will enter the ADC pipeline and
complete.

• Bit 0 – ENABLE: Enable
Setting this bit enables the ADC.

28.16.2 CTRLB – ADC Control register B

• Bit 7 – IMPMODE: Gain Stage Impedance Mode
This bit controls the impedance mode of the gain stage. See GAIN setting with ADC channel
register description for more information.

Bit 7 6 5 4 3 2 1 0

+0x00 DMASEL[1:0] CHSTART[3:0] FLUSH ENABLE CTRLA

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 28-1. DMA request selection.

DMASEL[1:0] Group Configuration Description

00 OFF No combined DMA request

01 CH01 Common request for ADC channels 0 and 1

10 CH012 Common request for ADC channels 0, 1, and 2

11 CH0123 Common request for ADC channels 0, 1, 2, and 3

Bit 7 6 5 4 3 2 1 0

+0x01 IMPMODE CURRLIMIT[1:0] CONVMODE FREERUN RESOLUTION[1:0] – CTRLB

Read/Write R/W R/W R/W R/W R/W R/W R/W R

Initial Value 0 0 0 0 0 0 0 0
370
8331B–AVR–03/12

Atmel AVR XMEGA AU
• Bit 6:5 – CURRLIMIT[1:0]: Current Limitation
These bits can be used to limit the current consumption of the ADC by reducing the maximum
ADC sample rate. The available settings are shown in Table 28-3 on page 371. The indicated
current limitations are nominal values. Refer to the device datasheet for actual current limitation
for each setting.

• Bit 4 – CONVMODE: Conversion Mode
This bit controls whether the ADC will work in signed or unsigned mode. By default, this bit is
cleared and the ADC is configured for unsigned mode. When this bit is set, the ADC is config-
ured for signed mode.

• Bit 3 – FREERUN: Free Running Mode
When the bit is set to one, the ADC is in free running mode and the ADC channels defined in the
EVCTRL register are swept repeatedly.

• Bit 2:1 – RESOLUTION[1:0]: Conversion Result Resolution
These bits define whether the ADC completes the conversion at 12- or 8-bit result resolution.
They also define whether the 12-bit result is left or right adjusted within the 16-bit result regis-
ters. See Table 28-4 on page 371 for possible settings.

• Bit 0 - Reserved
This bit is unused and reserved for future use. For compatibility with future devices, always write
this bit to zero when this register is written.

Table 28-2. Gain stage impedance mode.

IMPMODE Group Configuration Description

0 HIGHIMP For high-impedance sources; charge will remain on input

1 LOWIMP For low impedance sources

Table 28-3. ADC current limitations.

CURRLIMIT[1:0] Group Configuration Description

00 NO No limit

01 LOW Low current limit, max. sampling rate 1.5MSPS

10 MED Medium current limit, max. sampling rate 1MSPS

11 HIGH High current limit, max. sampling rate 0.5MSPS

Table 28-4. ADC conversion result resolution.

RESOLUTION[1:0] Group Configuration Description

00 12BIT 12-bit result, right adjusted

01 Reserved

10 8BIT 8-bit result, right adjusted

11 LEFT12BIT 12-bit result, left adjusted
371
8331B–AVR–03/12

Atmel AVR XMEGA AU
28.16.3 REFCTRL – Reference Control register

• Bit 7 – Reserved
This bit is unused and reserved for future use. For compatibility with future devices, always write
this bit to zero when this register is written.

• Bits 6:4 – REFSEL[2:0]: Reference Selection
These bits selects the reference for the ADC according to Table 28-5 on page 372.

• Bit 3:2 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

• Bit 1 – BANDGAP: Bandgap Enable
Setting this bit enables the bandgap for ADC measurement. Note that if any other functions are
already using the bandgap, this bit does not need to be set when the internal 1.00V reference is
used for another ADC, the DAC or if the brownout detector is enabled.

• Bit 0 – TEMPREF: Temperature Reference Enable
Setting this bit enables the temperature sensor for ADC measurement.

28.16.4 EVCTRL – Event Control register

• Bit 7:6 – SWEEP[1:0]: Channel Sweep
These bits control which ADC channels are included in a channel sweep triggered by the event
system or when in free running mode. See Table 28-6 on page 373.

Bit 7 6 5 4 3 2 1 0

+0x02 – REFSEL[2:0] – – BANDGAP TEMPREF REFCTRL

Read/Write R R/W R/W R/W R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 28-5. ADC reference selection.

REFSEL[2:0] Group Configuration Description

000 INT1V 10/11 of bandgap (1.0V)

001 INTVCC VCC/1.6

010 AREFA External reference from AREF pin on PORT A

011 AREFB External reference from AREF pin on PORT B

100 INTVCC2 VCC/2

101 - 111 Reserved

Bit 7 6 5 4 3 2 1 0

+0x03 SWEEP[1:0] EVSEL[2:0] EVACT[2:0] EVCTRL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
372
8331B–AVR–03/12

Atmel AVR XMEGA AU
• Bit 5:3 – EVSEL[2:0]: Event Channel Input Select
These bits select which event channel will trigger which ADC channel. Each setting defines a
group of event channels, where the event channel with the lowest number will trigger ADC chan-
nel 0, the next event channel will trigger ADC channel 1, and so on. See Table 28-7 on page
373.

• Bit 2:0 – EVACT[2:0]: Event Mode
These bits select and limit how many of the selected event input channel are used, and also fur-
ther limit the ADC channels triggers. They also define more special event triggers as defined in
Table 28-7 on page 373.

Table 28-6. ADC channel select.

SWEEP[1:0] Group Configuration Active ADC Channels for Channel Sweep

00 0 Only ADC channel 0

01 01 ADC channels 0 and 1

10 012 ADC channels 0, 1, and 2

11 0123 ADC channels 0, 1, 2, and 3

Table 28-7. ADC event channel select.

EVSEL[2:0] Group Configuration Selected Event Lines

000 0123 Event channel 0, 1, 2, and 3 as selected inputs

001 1234 Event channel 1, 2, 3, and 4 as selected inputs

010 2345 Event channel 2, 3, 4, and 5 as selected inputs

011 3456 Event channel 3, 4, 5, and 6 as selected inputs

100 4567 Event channel 4, 5, 6, and 7 as selected inputs

101 567 Event channel 5, 6, and 7 as selected inputs

110 67 Event channel 6and7 as selected inputs

111 7 Event channel 7 as selected input

Table 28-8. ADC event mode select.

EVACT[2:0] Group Configuration Event Input Operation Mode

000 NONE No event inputs

001 CH0 Event channel with the lowest number defined by EVSEL
triggers conversion on ADC channel 0

010 CH01 Event channels with the two lowest numbers defined by
EVSEL trigger conversions on ADC channels 0 and 1,
respectively

011 CH012 Event channels with the three lowest numbers defined by
EVSEL trigger conversions on ADC channels 0, 1, and 2,
respectively

100 CH0123 Event channels defined by EVSEL trigger conversion on ADC
channels 0, 1, 2, and 3, respectively
373
8331B–AVR–03/12

Atmel AVR XMEGA AU
28.16.5 PRESCALER – Clock Prescaler register

• Bit 7:3 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

• Bit 2:0 – PRESCALER[2:0]: Prescaler Configuration
These bits define the ADC clock relative to the peripheral clock according to Table 28-9 on page
374.

28.16.6 INTFLAGS – Interrupt Flag register

• Bit 7:4 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

101 SWEEP One sweep of all ADC channels defined by SWEEP on
incoming event channel with the lowest number defined by
EVSEL

110 SYNCSWEEP One sweep of all active ADC channels defined by SWEEP on
incoming event channel with the lowest number defined by
EVSE. In addition the ADC is flushed and restarted for
accurate timing

111 Reserved

Table 28-8. ADC event mode select.

Bit 7 6 5 4 3 2 1 0

+0x04 – – – – – PRESCALER[2:0] PRESCALER

Read/Write R R R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 28-9. ADC prescaler settings.

PRESCALER[2:0] Group Configuration Peripheral Clock Division Factor

000 DIV4 4

001 DIV8 8

010 DIV16 16

011 DIV32 32

100 DIV64 64

101 DIV128 128

110 DIV256 256

111 DIV512 512

Bit 7 6 5 4 3 2 1 0

+0x06 – – – – CH[3:0]IF INTFLAGS

Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
374
8331B–AVR–03/12

Atmel AVR XMEGA AU
• Bit 3:0 – CH[3:0]IF: Interrupt Flags
These flags are set when the ADC conversion is complete for the corresponding ADC channel. If
an ADC channel is configured for compare mode, the corresponding flag will be set if the com-
pare condition is met. CHnIF is automatically cleared when the ADC channel n interrupt vector is
executed. The flag can also be cleared by writing a one to its bit location.

28.16.7 TEMP – Temporary register

• Bit 7:0 – TEMP[7:0]: Temporary Register
This register is used when reading 16-bit registers in the ADC controller. The high byte of the 16-
bit register is stored here when the low byte is read by the CPU. This register can also be read
and written from the user software.

For more details on 16-bit register access, refer to ”Accessing 16-bit Registers” on page 13.

28.16.8 CALL – Calibration Value register
The CALL and CALH register pair hold the 12-bit calibration value. The ADC pipeline is cali-
brated during production programming, and the calibration value must be read from the
signature row and written to the CAL register from software.

• Bit 7:0 – CAL[7:0]: ADC Calibration value
These are the eight lsbs of the 12-bit CAL value.

28.16.9 CALH – Calibration Value register

• Bit 3:0 – CAL[11:8]: Calibration value
These are the four msbs of the 12-bit CAL value.

Bit 7 6 5 4 3 2 1 0

+0x07 TEMP[7:0] TEMP

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x0C CAL[7:0] CALL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x0D – – – – CAL[11:8] CALH

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
375
8331B–AVR–03/12

Atmel AVR XMEGA AU
28.16.10 CHnRESH – Channel n Result Register High
The CHnRESL and CHnRESH register pair represents the 16-bit value, CHnRES. For details on
reading 16-bit registers, refer to ”Accessing 16-bit Registers” on page 13.

28.16.10.1 12-bit Mode, Left Adjusted

• Bit 7:0 – CHRES[11:4]: Channel Result High
These are the eight msbs of the 12-bit ADC result.

28.16.10.2 12-bit Mode, Right Adjusted

• Bit 7:4 – Reserved
These bits will in practice be the extension of the sign bit, CHRES11, when the ADC works in dif-
ferential mode, and set to zero when the ADC works in signed mode.

• Bit 3:0 – CHRES[11:8]: Channel Result High
These are the four msbs of the 12-bit ADC result.

28.16.10.3 8-bit Mode

• Bit 7:0 – Reserved
These bits will in practice be the extension of the sign bit, CHRES7, when the ADC works in
signed mode, and set to zero when the ADC works in single-ended mode.

28.16.11 CHnRESL – Channel n Result register Low

28.16.11.1 12-/8-bit Mode

• Bit 7:0 – CHRES[7:0]: Channel Result Low
These are the eight lsbs of the ADC result.

28.16.11.2 12-bit Mode, Left Adjusted

• Bit 7:4 – CHRES[3:0]: Channel Result Low
These are the four lsbs of the 12-bit ADC result.

Bit 7 6 5 4 3 2 1 0

12-bit, left CHRES[11:4]

12-bit, right – – – – CHRES[11:8]

8-bit – – – – – – – –

Read/Write R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

12-/8-bit, right CHRES[7:0]

12-bit, left CHRES[3:0] – – – –

Read/Write R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0
376
8331B–AVR–03/12

Atmel AVR XMEGA AU
• Bit 3:0 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

28.16.12 CMPH – Compare Register High
The CMPH and CMPL register pair represents the 16-bit value, CMP. For details on reading and
writing 16-bit registers, refer to ”Accessing 16-bit Registers” on page 13.

• Bit 7:0 – CMP[15:0]: Compare Value High
These are the eight msbs of the 16-bit ADC compare value. In signed mode, the number repre-
sentation is 2's complement, and the msb is the sign bit.

28.16.13 CMPL – Compare Register Low

• Bit 7:0 – CMP[7:0]: Compare Value Low
These are the eight lsbs of the 16-bit ADC compare value. In signed mode, the number repre-
sentation is 2's complement.

28.17 Register Description - ADC Channel

28.17.1 CTRL – Channel Control Register

• Bit 7 – START: START Conversion on Channel
Setting this bit will start a conversion on the channel. The bit is cleared by hardware when the
conversion has started. Setting this bit when it already is set will have no effect. Writing or read-
ing this bit is equivalent to writing the CH[3:0]START bits in ”CTRLA – Control register A” on
page 370.

• Bit 6:5 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

• Bit 4:2 – GAIN[2:0]: Gain Factor
These bits define the gain factor for the ADC gain stage.

Bit 7 6 5 4 3 2 1 0

+0x19 CMP[15:0] CMPH

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x18 CMP[7:0] CMPL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x00 START – – GAIN[2:0] INPUTMODE[1:0] CTRL

Read/Write R/W R R R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
377
8331B–AVR–03/12

Atmel AVR XMEGA AU
See Table 28-8 on page 373. Gain is valid only with certain MUX settings. See ”MUXCTRL –
ADC Channel MUX Control registers” on page 378.

• Bit 1:0 – INPUTMODE[1:0]: Channel Input Mode
These bits define the channel mode. Changing input mode will corrupt any data in the pipeline.

28.17.2 MUXCTRL – ADC Channel MUX Control registers
The MUXCTRL register defines the input source for the channel.

• Bit 7 – Reserved
This bit is unused and reserved for future use. For compatibility with future devices, always write
this bit to zero when this register is written.

Table 28-10. ADC gain factor.

GAIN[2:0] Group Configuration Gain Factor

000 1X 1x

001 2X 2x

010 4X 4x

011 8X 8x

100 16X 16x

101 32X 32x

110 64X 64x

111 DIV2 ½x

Table 28-11. Channel input modes, CONVMODE=0 (unsigned mode).

INPUTMODE[1:0] Group Configuration Description

00 INTERNAL Internal positive input signal

01 SINGLEENDED Single-ended positive input signal

10 Reserved

11 Reserved

Table 28-12. Channel input modes, CONVMODE=1 (signed mode).

INPUTMODE[1:0] Group Configuration Description

00 INTERNAL Internal positive input signal

01 SINGLEENDED Single-ended positive input signal

10 DIFF Differential input signal

11 DIFFWGAIN Differential input signal with gain

Bit 7 6 5 4 3 2 1 0

+0x01 – MUXPOS[3:0] MUXNEG[2:0] MUXCTRL

Read/Write R R/W R/W R/W R/W R R/W R/W

Initial Value 0 0 0 0 0 0 0 0
378
8331B–AVR–03/12

Atmel AVR XMEGA AU
• Bit 6:3 – MUXPOS[3:0]: MUX Selection on Positive ADC Input
These bits define the MUX selection for the positive ADC input. Table 28-13 on page 379 and
Table 28-14 on page 379 show the possible input selection for the different input modes.

Table 28-13. ADC MUXPOS configuration when INPUTMODE[1:0] = 00 (internal) is used.

MUXPOS[3:0] Group Configuration Description

0000 TEMP Temperature reference

0001 BANDGAP Bandgap voltage

0010 SCALEDVCC 1/10 scaled VCC

0011 DAC DAC output

0100-1111 Reserved

Table 28-14. ADC MUXPOS configuration when INPUTMODE[1:0] = 01 (single-ended) or
INPUTMODE[1:0] = 10 (differential) is used.

MUXPOS[3:0] Group Configuration Description

0000 PIN0 ADC0 pin

0001 PIN1 ADC1 pin

0010 PIN2 ADC2 pin

0011 PIN3 ADC3 pin

0100 PIN4 ADC4 pin

0101 PIN5 ADC5 pin

0110 PIN6 ADC6 pin

0111 PIN7 ADC7 pin

1000 PIN8 ADC8 pin

1001 PIN9 ADC9 pin

1010 PIN10 ADC10 pin

1011 PIN11 ADC11 pin

1100 PIN12 ADC12 pin

1101 PIN13 ADC13 pin

1110 PIN14 ADC14 pin

1111 PIN15 ADC15 pin

Table 28-15. ADC MUXPOS configuration when INPUTMODE[1:0] = 11 (differential with gain)
is used.

MUXPOS[3:0] Group Configuration Description

0000 PIN0 ADC0 pin

0001 PIN1 ADC1 pin

0010 PIN2 ADC2 pin

0011 PIN3 ADC3 pin
379
8331B–AVR–03/12

Atmel AVR XMEGA AU
Depending on the device pin count and feature configuration, the actual number of analog input
pins may be less than 16. Refer to the device datasheet and pin-out description for details.

• Bit 2:0 – MUXNEG[2:0]: MUX Selection on Negative ADC Input
These bits define the MUX selection for the negative ADC input when differential measurements
are done. For internal or single-ended measurements, these bits are not used.

Table 28-16 on page 380 andTable 28-17 on page 380 show the possible input sections.

0100 PIN4 ADC4 pin

0101 PIN5 ADC5 pin

0110 PIN6 ADC6 pin

0111 PIN7 ADC7 pin

1XXX Reserved

Table 28-16. ADC MUXNEG configuration, INPUTMODE[1:0] = 10, differential without gain.

MUXNEG[2:0] Group Configuration Analog Input

000 PIN0 ADC0 pin

001 PIN1 ADC1 pin

010 PIN2 ADC2 pin

011 PIN3 ADC3 pin

100 - Reserved

101 GND PAD ground

110 - Reserved

111 INTGND Internal ground

Table 28-17. ADC MUXNEG configuration, INPUTMODE[1:0] = 11, differential with gain.

MUXNEG[2:0] Group Configuration Analog Input

000 PIN4 ADC4 pin

001 PIN5 ADC5 pin

010 PIN6 ADC6 pin

011 PIN7 ADC7 pin

100 INTGND Internal ground

101 - Reserved

110 - Reserved

111 GND PAD ground

Table 28-15. ADC MUXPOS configuration when INPUTMODE[1:0] = 11 (differential with gain)
is used. (Continued)
380
8331B–AVR–03/12

Atmel AVR XMEGA AU
28.17.3 INTCTRL – Channel Interrupt Control registers

• Bits 7:4 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

• Bit 3:2 – INTMODE: Interrupt Mode
These bits select the interrupt mode for the channel according to Table 28-18.

• Bits 1:0 – INTLVL[1:0]: Interrupt Priority Level and Enable
These bits enable the ADC channel interrupt and select the interrupt level, as described in ”Inter-
rupts and Programmable Multilevel Interrupt Controller” on page 134. The enabled interrupt will
be triggered for conditions when the IF bit in the INTFLAGS register is set.

28.17.4 INTFLAGS – ADC Channel Interrupt Flag registers

• Bit 7:1 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

• Bit 0 – IF: Channel Interrupt Flag
The interrupt flag is set when the ADC conversion is complete. If the channel is configured for
compare mode, the flag will be set if the compare condition is met. IF is automatically cleared
when the ADC channel interrupt vector is executed. The bit can also be cleared by writing a one
to the bit location.

28.17.5 RESH – Channel n Result register High
For all result registers and with any ADC result resolution, a signed number is represented in 2’s
complement form, and the msb represents the sign bit.

Bit 7 6 5 4 3 2 1 0

+0x02 – – – – INTMODE[1:0} INTLVL[1:0] INTCTRL

Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 28-18. ADC interrupt mode.

INTMODE[1:0] Group Configuration Interrupt Mode

00 COMPLETE Conversion complete

01 BELOW Compare result below threshold

10 Reserved

11 ABOVE Compare result above threshold

Bit 7 6 5 4 3 2 1 0

+0x03 – – – – – – – IF INTFLAGS

Read/Write R R R R R R R R/W

Initial Value 0 0 0 0 0 0 0 0
381
8331B–AVR–03/12

Atmel AVR XMEGA AU
The RESL and RESH register pair represents the 16-bit value, ADCRESULT. Reading and writ-
ing 16-bit values require special attention. Refer to ”Accessing 16-bit Registers” on page 13 for
details.

28.17.5.1 12-bit Mode, Left Adjusted

• Bit 7:0 – RES[11:4]: Channel Result High
These are the eight msbs of the 12-bit ADC result.

28.17.5.2 12-bit Mode, Right Adjusted

• Bit 7:4 – Reserved
These bits will in practice be the extension of the sign bit, CHRES11, when the ADC works in dif-
ferential mode, and set to zero when the ADC works in signed mode.

• Bits 3:0 – RES[11:8]: Channel Result High
These are the four msbs of the 12-bit ADC result.

28.17.5.3 8-bit Mode

• Bit 7:0 – Reserved
These bits will in practice be the extension of the sign bit, CHRES7, when the ADC works in
signed mode, and set to zero when the ADC works in single-ended mode.

28.17.6 RESL – Channel n Result register Low

28.17.6.1 12-/8-bit Mode

• Bit 7:0 – RES[7:0]: Channel Result Low
These are the eight lsbs of the ADC result.

28.17.6.2 12-bit Mode, Left Adjusted

• Bit 7:4 – RES[3:0]: Channel Result Low
These are the four lsbs of the 12-bit ADC result.

Bit 7 6 5 4 3 2 1 0

12-bit, left.

+0x05

RES[11:4]

12-bit, right – – – – RES[11:8]

8-bit – – – – – – – –

Read/Write R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

12-/8-bit, right
+0x04

RES[7:0]

12-bit, left. RES[3:0] – – – –

Read/Write R R R R R R R R

Initial Value 0 0 0 0 0 0 0 0
382
8331B–AVR–03/12

Atmel AVR XMEGA AU
• Bit 3:0 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

28.17.7 SCAN – Channel Scan register
Scan is enabled when COUNT is set differently than 0. This register is available only for ADC
channel 0.

• Bit 7:4 – OFFSET[3:0]: Positive MUX Setting Offset
The channel scan is enabled when COUNT != 0 and this register contains the offset for the next
input source to be converted on ADC channel 0 (CH0). The actual MUX setting for positive input
equals MUXPOS + OFFSET. The value is incremented after each conversion until it reaches the
maximum value given by COUNT. When OFFSET is equal to COUNT, OFFSET will be cleared
on the next conversion.

• Bit 3:0 – COUNT[3:0]: Number of Input Channels Included in Scan
This register gives the number of input sources included in the channel scan. The number of
input sources included is COUNT + 1. The input channels included are the range from
MUXPOS + OFFSET to MUXPOS + OFFSET + COUNT.

Bit 7 6 5 4 3 2 1 0

+0x06 OFFSET[3:0] COUNT[3:0] SCAN

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
383
8331B–AVR–03/12

Atmel AVR XMEGA AU
28.18 Register Summary – ADC
This is the register summary when the ADC is configured to give standard 12-bit results. The register summaries for 8-bit
and 12-bit left adjusted will be similar, but with some changes in the result registers, CHnRESH and CHnRESL.

28.19 Register Summary – ADC Channel

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page
+0x00 CTRLA DMASEL[1:0] CH[3:0]START FLUSH ENABLE 370

+0x01 CTRLB IMPMODE CURRLIMIT[1:0] CONVMODE FREERUN RESOLUTION[1:0] – 370

+0x02 REFCTRL – REFSEL[2:0] – – BANDGAP TEMPREF 372

+0x03 EVCTRL SWEEP[1:0] EVSEL[2:0] EVACT[2:0] 372

+0x04 PRESCALER – – – – – PRESCALER[2:0] 374

+0x05 Reserved – – – – – – – –

+0x06 INTFLAGS – – – – CH[3:0]IF 374

+0x07 TEMP TEMP[7:0] 375

+0x08 Reserved – – – – – – – –

+0x09 Reserved – – – – – – – –

+0x0A Reserved – – – – – – – –

+0x0B Reserved – – – – – – – –

+0x0C CALL CAL[7:0] 375

+0x0D CALH – – – – CAL[11:8]

+0x0E Reserved – – – – – – – –

+0x0F Reserved – – – – – – – –

+0x10 CH0RESL CH0RES[7:0] 376

+0x11 CH0RESH CH0RES[15:8] 376

+0x12 CH1RESL CH1RES[7:0] 376

+0x13 CH1RESH CH1RES[15:8] 376

+0x14 CH2RESL CH2RES[7:0] 376

+0x15 CH2RESH CH2RES[15:8] 376

+0x16 CH3RESL CH3RES[7:0] 376

+0x17 CH3RESH CH3RES[15:8] 376

+0x18 CMPL CMP[7:0] 377

+0x19 CMPH CMP[15:8] 377

+0x1A Reserved – – – – – – – –

+0x1B Reserved – – – – – – – –

+0x1C Reserved – – – – – – – –

+0x1D Reserved – – – – – – – –

+0x1E Reserved – – – – – – – –

+0x1F Reserved – – – – – – – –

+0x20 CH0 Offset – – – – – – – –

+0x28 CH1 Offset – – – – – – – –

+0x30 CH2 Offset – – – – – – – –

+0x38 CH3 Offset – – – – – – – –

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page
+0x00 CTRL START – – GAIN[2:0] INPUTMODE[1:0] 377

+0x01 MUXCTRL – MUXPOS[3:0] MUXNEG[2:0] 378

+0x02 INTCTRL – – – – INTMODE[1:0] INTLVL[1:0] 381

+0x03 INTFLAGS – – – – – – – IF 381

+0x04 RESL RES[7:0] 382

+0x05 RESH RES[15:8] 381

+0x06 SCAN OFFSET COUNT 381

+0x07 Reserved – – – – – – – –
384
8331B–AVR–03/12

Atmel AVR XMEGA AU
28.20 Interrupt vector Summary

Table 28-19. Analog-to-digital converter interrupt vectors and their word offset address.

Offset Source Interrupt Description

0x00 CH0 Analog-to-digital converter channel 0 interrupt vector

0x02 CH1 Analog-to-digital converter channel 1 interrupt vector

0x04 CH2 Analog-to-digital converter channel 2 interrupt vector

0x06 CH3 Analog-to-digital converter channel 3 interrupt vector
385
8331B–AVR–03/12

Atmel AVR XMEGA AU
29. DAC – Digital to Analog Converter

29.1 Features
• 12-bit resolution
• Two independent, continuous-drive output channels
• Up to one million samples per second conversion rate per DAC channel
• Built-in calibration that removes:

– Offset error
– Gain error

• Multiple conversion trigger sources
– On new available data
– Events from the event system

• High drive capabilities and support for
– Resistive loads
– Capacitive loads
– Combined resistive and capacitive loads

• Internal and external reference options
• DAC output available as input to analog comparator and ADC
• Low-power mode, with reduced drive strength
• Optional DMA transfer of data

29.2 Overview
The digital-to-analog converter (DAC) converts digital values to voltages. The DAC has two
channels, each with12-bit resolution, and is capable of converting up to one million samples per
second (MSPS) on each channel. The built-in calibration system can remove offset and gain
error when loaded with calibration values from software.

Figure 29-1 illustrates the basic functionality of the DAC. Not all functions are shown.

Figure 29-1. DAC overview.

CTRLA

CH1DATA

CH0DATA

Trigger

Trigger

Internal Output enable

Enable

Internal 1.00V
AREFA
AREFB

Reference
voltage

AVCC

Output
Driver

Output
Driver

D
A
T
A

Int.
driver

D
A
T
A

CTRLB

DMA req
(Data Empty)

DMA req
(Data Empty)

Select

12

12

Select

Enable
To
AC/ADC
386
8331B–AVR–03/12

Atmel AVR XMEGA AU
A DAC conversion is automatically started when new data to be converted are available. Events
from the event system can also be used to trigger a conversion, and this enables synchronized
and timed conversions between the DAC and other peripherals, such as a timer/counter. The
DMA controller can be used to transfer data to the DAC.

The DAC has high drive strength, and is capable of driving both resistive and capacitive loads,
aswell as loads which combine both. A low-power mode is available, which will reduce the drive
strength of the output.

Internal and external voltage references can be used. The DAC output is also internally available
for use as input to the analog comparator or ADC.

29.3 Voltage reference selection
The following can be used as the referencevoltage (VREF) for the DAC”

– AVCC voltage

– Accurate internal 1.00V voltage

– External voltage applied to AREF pin on PORTA

– External voltage applied to AREF pin on PORTB

29.4 Starting a Conversion
By default, conversions are started automatically when new data are written to the channel data
register. It is also possible to enable events from the event system to trigger conversion starts.
When enabled, a new conversion is started when the DAC channel receives an event and the
channel data register has been updated. This enables conversion starts to be synchronized with
external events and/or timed to ensure regular and fixed conversion intervals.

29.5 Output and output channels
The two DAC channels have fully independent outputs and individual data and conversion con-
trol registers. This enables the DAC to create two different analog signals. The channel 0 output
can also be made internally available as input for the Analog Comparator and the ADC.

The output voltage from a DAC channel (VDAC) is given as:

29.6 DAC Output model
Each DAC output channel has a driver buffer with feedback to ensure that the voltage on the
DAC output pin is equal to the DACs internal voltage. Figure 29-2 on page 388 shows the DAC
output model. For details on Rchannel, refer to the DAC characteristics in the device data sheet.

VDACn
CHnDATA

0xFFF
---------------------------- VREF×=
387
8331B–AVR–03/12

Atmel AVR XMEGA AU
Figure 29-2. DAC output model

29.7 DAC clock
The DAC is clocked directly from the peripheral clock (clkPER), and this puts a limitation on how
fast new data can be clocked into the DAC data registers.

29.8 Low Power mode
To reduce the power consumption in DAC conversions, the DAC may be set in a Low Power
mode. Conversion time will be longer if new conversions are started in this mode. This increases
the DAC conversion time per DAC channel by a factor of two.

29.9 Calibration
For improved accuracy, it is possible to calibrate for gain and offset errors in the DAC.

To get the best calibration result, it is recommended to use the same DAC configuration during
calibration as will be used in the final application. The theoretical transfer function for the DAC
was shown in ”Overview” on page 386. Including gain and offset errors, the DAC output value
can be expressed as:

Equation 29-1.Calculation of DAC output value

To calibrate for offset error, output the DAC channel's middle code (0x800) and adjust the offset
calibration value until the measured output value is as close as possible to the middle value
(VREF / 2). The formula for the offset calibration is given by the Equation 29-2 on page 388,
where OCAL is OFFSETCAL and GCAL is GAINCAL.

Equation 29-2.Offset calibration.

To calibrate for gain error, output the DAC channel's maximum code (0xFFF) and adjust the gain
calibration value until the measured output value is as close as possible to the top value
(VREF x 4095 / 4096). The gain calibration controls the slope of the DAC characteristic by rotat-
ing the transfer function around the middle code. The formula for gain calibration is given by the
Equation 29-3 on page 389.

DAC output
Rchannel

Rfeedback

DAC voltage
Buffer DAC out

VDAC VREF DATA
0xFFF
------------------ ERRORGAIN⋅⎝ ⎠

⎛ ⎞⋅ VOFFSET+=

VOCAL VREF 2.OCAL 7[] 1–() OCAL 6[]
64

------------------------ OCAL 5[]
128

------------------------ OCAL 4[]
256

------------------------ OCAL 3[]
512

------------------------ OCAL 2[]
1024

------------------------ OCAL 1[]
2048

------------------------ OCAL 0[]
4096

------------------------+ + + + + +⎝ ⎠
⎛ ⎞⋅ ⋅=
388
8331B–AVR–03/12

Atmel AVR XMEGA AU
Equation 29-3.Gain calibration.

Including calibration in the equation, the DAC output can be expressed by Equation 29-4 on
page 389.

Equation 29-4.DAC output calculation

VDAC_out = VDAC + VOCAL + VGCAL

VGCAL V(DAC
VREF

2
---------------⎝ ⎠

⎛ ⎞
⎠
⎞– 1 2.G– CAL 7[]() GCAL 6[]

16
------------------------ GCAL 5[]

32
------------------------ GCAL 4[]

64
------------------------ GCAL 3[]

128
------------------------ GCAL 2[]

256
------------------------ GCAL 1[]

512
------------------------ GCAL 0[]

1024
------------------------+ + + + + +⎝ ⎠

⎛ ⎞⋅ ⋅=
389
8331B–AVR–03/12

Atmel AVR XMEGA AU
29.10 Register Description

29.10.1 CTRLA – Control Register A

• Bit 7:5 – Reserved
These bite are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

• Bit 4 – IDOEN: Internal Output Enable
Setting this bit will enable the internal DAC channel 0 output to be used by the Analog Compara-
tor and ADC. This will then also disable the output pin for DAC Channel 0.

• Bit 3 – CH1EN: Channel 1 Output Enable
Setting this bit will make channel 1 available on the output pin.

• Bit 2 – CH0EN: Channel 0 Output Enable
Setting this bit will make channel 0 available on the output pin unless IDOEN is set to 1.

• Bit 1 – LPMODE: Low Power Mode
Setting this bit enables the DAC low-power mode. The DAC is turned off between each conver-
sion to save current. Conversion time will be doubled when new conversions are started in this
mode.

• Bit 0 – ENABLE: Enable
This bit enables the entire DAC.

29.10.2 CTRLB – Control Register B

• Bit 7 – Reserved
This bit is unused and reserved for future use. For compatibility with future devices, always write
this bit to zero when this register is written.

• Bit 6:5 – CHSEL[1:0]: Channel Selection
These bits control which DAC channels are enabled and operating. Table 29-1 shows the avail-
able selections.

Bit 7 6 5 4 3 2 1 0

+0x00 – – – IDOEN CH1EN CH0EN LPMODE ENABLE CTRLA

Read/Write R R R R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x01 – CHSEL[1:0] – – – CH1TRIG CH0TRIG CTRLB

Read/Write R R/W R/W R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0
390
8331B–AVR–03/12

Atmel AVR XMEGA AU

• Bit 4:2 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

• Bit 1 – CH1TRIG: Auto trigged mode Channel 1
If this bit is set, an event on the configured event channel, set in EVCTRL, will trigger a conver-
sion on DAC channel 1 if its data register, CH1DATA, has been updated.

• Bit 0 – CH0TRIG: Auto trigged mode Channel 0
If this bit is set, an event on the configured event channel, set in EVCTRL, will trigger a conver-
sion on DAC channel 0 if its data register, CH0DATA, has been updated.

29.10.3 CTRLC – Control Register C

• Bit 7:5 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

• Bit 4:3 – REFSEL[1:0]: Reference Selection
These bits select the reference voltage for the DAC according to Table 29-2 on page 391.

• Bit 2:1 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

Table 29-1. DAC channel selection

CHSEL[1:0] Group Configuration Description

00 SINGLE Single-channel operation on channel 0

01 SINGLE1 Single-channel operation on channel 1

10 DUAL Dual-channel operation

11 – Reserved

Bit 7 6 5 4 3 2 1 0

+0x02 – – – REFSEL[1:0] – – LEFTADJ CTRLC

Read/Write R R R R/W R/W R R R/W

Initial Value 0 0 0 0 0 0 0 0

Table 29-2. DAC Reference selection.

REFSEL[1:0] Group Configuration Description

00 INT1V Internal 1.00V

01 AVCC AVCC

10 AREFA AREF on PORTA

11 AREFB AREF on PORTB
391
8331B–AVR–03/12

Atmel AVR XMEGA AU
• Bit 0 - LEFTADJ: Left-Adjust Value
If this bit is set, CH0DATA and CH1DATA are left-adjusted.

29.10.4 EVCTRL – Event Control Register

• Bit 7:4 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

• Bit 3 – EVSEL[3]: Event Selection bit 3
Setting this bit to 1 enables event channel EVSEL[2:0]+1 as the trigger source for DAC Channel
1. When this bit is 0, the same event channel is used as the trigger source for both DAC
channels.

• Bit 2:0 – EVSEL[2:0]: Event Channel Input Selection
These bits select which Event System channel is used for triggering a DAC conversion. Table
29-3 shows the available selections.

29.10.5 STATUS – Status Register

• Bit 7:2 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

Bit 7 6 5 4 3 2 1 0

+0x03 – – – – EVSEL[3:0] EVCTRL

Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 29-3. DAC Event input Selection.

EVSEL[2:0] Group Configuration Description

000 0 Event channel 0 as input to DAC

001 1 Event channel 1 as input to DAC

010 2 Event channel 2 as input to DAC

011 3 Event channel 3 as input to DAC

100 4 Event channel 4 as input to DAC

101 5 Event channel 5 as input to DAC

110 6 Event channel 6 as input to DAC

111 7 Event channel 7 as input to DAC

Bit 7 6 5 4 3 2 1 0

+0x05 – – – – – – CH1DRE CH0DRE STATUS

Read/Write R R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0
392
8331B–AVR–03/12

Atmel AVR XMEGA AU
• Bit 1 – CH1DRE: Channel 1 Data Register Empty
This bit when set indicates that the data register for channel 1 is empty, meaning that a new con-
version value may be written. Writing to the data register when this bit is cleared will cause the
pending conversion data to be overwritten. This bit is directly used for DMA requests.

• Bit 0 – CH0DRE: Channel 0 Data register Empty
This bit when set indicates that the data register for channel 0 is empty, meaning that a new con-
version value may be written. Writing to the data register when this bit is cleared will cause the
pending conversion data to be overwritten. This bit is directly used for DMA requests.

29.10.6 CH0DATAH – Channel 0 Data Register High
These two channel data registers, CHnDATAH and CHnDATAL, are the high byte and low byte,
respectively, of the 12-bit CHnDATA value that is converted to a voltage on DAC channel n. By
default, the 12 bits are distributed with 8 bits in CHnDATAL and 4 bits in the four lsb positions of
CHnDATAH (right-adjusted).To select left-adjusted data, set the LEFTADJ bit in the CTRLC
register.

When left adjusted data is selected, it is possible to do 8-bit conversions by writing only to the
high byte of CHnDATA, i.e., CHnDATAH. The TEMP register should be initialized to zero if only
8-bit conversion mode is used.

29.10.6.1 Right-adjusted

• Bit 7:4 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

• Bit 3:0 – CHDATA[11:8]: Conversion Data Register Channel 0, Four msbs
These bits are the four msbs of the 12-bit value to convert to channel 0 in right-adjusted mode.

29.10.6.2 Left-adjusted

• Bits 7:0 –- CHDATA[11:4]: Conversion Data Register Channel 0, Eight msbs
These bits are the eight msbs of the 12-bit value to convert to channel 0 in left-adjusted mode

Bit 7 6 5 4 3 2 1 0

Right-adjust
+0x19

– – – – CHDATA[11:8]

Left-adjust CHDATA[11:4]

Right-adjust Read/Write R R R R R/W R/W R/W R/W

Left-adjust Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Right-adjust Initial Value 0 0 0 0 0 0 0 0

Left-adjust Initial Value 0 0 0 0 0 0 0 0
393
8331B–AVR–03/12

Atmel AVR XMEGA AU
29.10.7 CH0DATAL – Channel 0 Data Register Low

29.10.7.1 Right-adjusted

• Bit 7:0 – CHDATA[7:0]: Conversion Data Register Channel 0, Eight lsbs
These bits are the eight lsbs of the 12-bit value to convert to channel 0 in right-adjusted mode.

29.10.7.2 Left-adjusted

• Bit 7:4 – CHDATA[3:0]: Conversion Data Register Channel 0, Four lsbs
These bits are the four lsbs of the 12-bit value to convert to channel 0 in left-adjusted mode.

• Bit 3:0 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

29.10.8 CH1DATAH – Channel 1 Data Register High

29.10.8.1 Right-adjusted

• Bit 7:4 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

• Bit 3:0 – CHDATA[11:8]: Conversion Data Register Channel 1, Four msbs
These bits are the four msbs of the 12-bit value to convert to channel 1 in right-adjusted mode.

29.10.8.2 Left-adjusted

• Bit 7:0 – CHDATA[11:4]: Conversion Data Register Channel 1, Eight msbs
These bits are the eight msbs of the 12-bit value to convert to channel 1 in left-adjusted mode.

Bit 7 6 5 4 3 2 1 0

Right-adjust
+0x18

CHDATA[7:0]

Left-adjust CHDATA[3:0] – – – –

Right-adjust Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Left-adjust Read/Write R/W R/W R/W R/W R R R R

Right-adjust Initial Value 0 0 0 0 0 0 0 0

Left-adjust Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

Right-adjust
+0x1B

– – – – CHDATA[11:8]

Left-adjust CHDATA[11:4]

Right-adjust Read/Write R R R R R/W R/W R/W R/W

Left-adjust Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Right-adjust Initial Value 0 0 0 0 0 0 0 0

Left-adjust Initial Value 0 0 0 0 0 0 0 0
394
8331B–AVR–03/12

Atmel AVR XMEGA AU
29.10.9 CH1DATAL – Channel 1 Data Register Low

29.10.9.1 Right-adjusted

• Bit 7:0 – CHDATA[7:0]: Conversion Data Register Channel 1, Eight lsbs
These bits are the eight lsbs of the 12-bit value to convert to channel 1 in right-adjusted mode.

29.10.9.2 Left-adjusted

• Bits 7:4 – CHDATA[3:0]: Conversion Data Register Channel 1, Four lsbs
These bits are the four lsbs of the 12-bit value to convert to channel 1 in left-adjusted mode.

• Bit 3:0 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

29.10.10 CH0GAINCAL – Gain Calibration Register

• Bit 7:0 – CH0GAINCAL[7:0]: Gain Calibration value
These bits are used to compensate for the gain error in DAC channel 0. See ”Calibration” on
page 388 for details.

29.10.11 CH0OFFSETCAL – Offset Calibration Register

• Bit 7:0 – CH1OFFSETCAL[7:0]: Offset Calibration value
These bits are used to compensate for the offset error in DAC channel 0. See ”Calibration” on
page 388 for details.

Bit 7 6 5 4 3 2 1 0

Right-adjust
+0x1A

CHDATA[7:0]

Left-adjust CHDATA[3:0] – – – –

Right-adjust Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Left-adjust Read/Write R/W R/W R/W R/W R R R R

Right-adjust Initial Value 0 0 0 0 0 0 0 0

Left-adjust Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x08 /+0x0A CH0GAINCAL[7:0] CH0GAINCAL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x09 CH0OFFSETCAL[7:0] CH0OFFSETCAL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
395
8331B–AVR–03/12

Atmel AVR XMEGA AU
29.10.12 CH1GAINCAL – Gain Calibration Register

• Bit 7:0 – CH0GAINCAL[7:0]: Gain Calibration value
These bits are used to compensate for the gain error in DAC channel 1. See ”Calibration” on
page 388 for details.

29.10.13 CH0OFFSETCAL – Offset Calibration Register

• Bit 7:0 – CH1OFFSETCAL[7:0]: Offset Calibration value
These bits are used to compensate for the offset error in DAC channel 1. See ”Calibration” on
page 388 for details.

Bit 7 6 5 4 3 2 1 0

+0x0A CH1GAINCAL[7:0] CH1GAINCAL

Read/Write R R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x0B CH1OFFSETCAL[7:0] CH1OFFSETCAL

Read/Write R R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
396
8331B–AVR–03/12

Atmel AVR XMEGA AU
29.11 Register Summary
This is the I/O summary when the DAC is configured to give standard 12-bit results. The I/O
summary for 12-bit left-adjusted results will be similar, but with some changes in the CHnDATAL
and CHnDATAH data registers.

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page
+0x00 CTRLA – – – IDOEN CH1EN CH0EN LPMODE ENABLE 390

+0x01 CTRLB – CHSEL[1:0] – – – CH1TRIG CH0TRIG 390

+0x02 CTRLC – – – REFSEL[1:0] - - LEFTADJ 391

+0x03 EVCTRL – – – – EVSEL[3:0] 392

+0x04 Reserved – – – – – – – –

+0x05 STATUS – – – – – – CH1DRE CH0DRE 392

+0x06 Reserved – – – – – – – –

+0x07 Reserved – – – – – – – –

+0x08 CH0GAINCAL CH0GAINCAL[7:0] 395

+0x09 CH0OFFSETCAL CH0OFFSETCAL[7:0] 395

+0x0A CH0GAINCAL CH1GAINCAL[7:0]

+0x0B CH0OFFSETCAL CH1OFFSETCAL[7:0]

+0x12 Reserved – – – – – – – –

+0x13 Reserved – – – – – – – –

+0x14 Reserved – – – – – – – –

+0x15 Reserved – – – – – – – –

+0x16 Reserved – – – – – – – –

+0x17 Reserved – – – – – – – –

+0x18 CH0DATAL CHDATA[7:0] 394

+0x19 CH0DATAH – – – – CHDATA[11:8] 393

+0x1A CH1DATAL CHDATA[7:0] 395

+0x1B CH1DATAH – – – – CHDATA[11:8] 394
397
8331B–AVR–03/12

Atmel AVR XMEGA AU
30. AC – Analog Comparator

30.1 Features
• Selectable propagation delay versus current consumption
• Selectable hysteresis

– None
– Small
– Large

• Analog comparator output available on pin
• Flexible input selection

– All pins on the port
– Output from the DAC
– Bandgap reference voltage
– A 64-level programmable voltage scaler of the internal VCC voltage

• Interrupt and event generation on:
– Rising edge
– Falling edge
– Toggle

• Window function interrupt and event generation on:
– Signal above window
– Signal inside window
– Signal below window

• Constant current source with configurable output pin selection
30.2 Overview

The analog comparator (AC) compares the voltage levels on two inputs and gives a digital out-
put based on this comparison. The analog comparator may be configured to generate interrupt
requests and/or events upon several different combinations of input change.

Two important properties of the analog comparator’s dynamic behavior are: hysteresis and prop-
agation delay. Both of these parameters may be adjusted in order to achieve the optimal
operation for each application.

The input selection includes analog port pins, several internal signals, and a 64-level program-
mable voltage scaler. The analog comparator output state can also be output on a pin for use by
external devices.

A constant current source can be enabled and output on a selectable pin. This can be used to
replace, for example, external resistors used to charge capacitors in capacitive touch sensing
applications.

The analog comparators are always grouped in pairs on each port. These are called analog
comparator 0 (AC0) and analog comparator 1 (AC1). They have identical behavior, but separate
control registers. Used as pair, they can be set in window mode to compare a signal to a voltage
range instead of a voltage level.
398
8331B–AVR–03/12

Atmel AVR XMEGA AU
Figure 30-1. Analog comparator overview.

30.3 Input Sources
Each analog comparator has one positive and one negative input. Each input may be chosen
from a selection of analog input pins and internal inputs such as a VCC voltage scaler. The digital
output from the analog comparator is one when the difference between the positive and the neg-
ative input voltage is positive, and zero otherwise.

30.3.1 Pin Inputs
Any of analog input pins on the port can be selected as input to the analog comparator.

30.3.2 Internal Inputs
Three internal inputs are available for the analog comparator:

• Output from the DAC

• Bandgap reference voltage

• Voltage scaler, which provides a 64-level scaling of the internal VCC voltage

30.4 Signal Compare
In order to start a signal comparison, the analog comparator must be configured with the pre-
ferred properties and inputs before the module is enabled. The result of the comparison is
continuously updated and available for application software and the event system.

30.5 Interrupts and Events
The analog comparator can be configured to generate interrupts when the output toggles, when
the output changes from zero to one (rising edge), or when the output changes from one to zero

 +

-

 Voltage
 Scaler ACnMUXCTRL

 +

-

ACnCTRL
Interrupt

Mode

Enable

Enable

Hysteresis

Hysteresis

 DAC

Bandgap

AC1OUT

WINCTRL

Interrupt
Sensititivity

Control
&

Window
Function

Events

Interrupts

AC0OUT

Pin Input

Pin Input

Pin Input

Pin Input
399
8331B–AVR–03/12

Atmel AVR XMEGA AU
(falling edge). Events are generated at all times for the same condition as the interrupt, regard-
less of whether the interrupt is enabled or not.

30.6 Window Mode
Two analog comparators on the same port can be configured to work together in window mode.
In this mode, a voltage range is defined, and the analog comparators give information about
whether an input signal is within this range or not.

Figure 30-2. The Analog comparators in window mode.

30.7 Input Hysteresis
Application software can select between no-, low-, and high hysteresis for the comparison.
Applying a hysteresis will help prevent constant toggling of the output that can be caused by
noise when the input signals are close to each other.

30.8 Propagation Delay vs. Power Consumption
It is possible to enable a high-speed mode to get the shortest possible propagation delay. This
mode consumes more power than the default low-power mode, which has a correspondingly
longer propagation delay.

AC0

+

-

AC1

+

-

Input signal

Upper limit of window

Lower limit of window

Interrupt
sensitivity

control

Interrupts

Events
400
8331B–AVR–03/12

Atmel AVR XMEGA AU
30.9 Register Description

30.9.1 ACnCTRL – Analog Comparator n Control register

• Bit 7:6 – INTMODE[1:0]: Interrupt Modes
These bits configure the interrupt mode for analog comparator n according to Table 30-1.

• Bit 5:4 – INTLVL[1:0]: Interrupt Level
These bits enable the analog comparator n interrupt and select the interrupt level, as described
in ”Interrupts and Programmable Multilevel Interrupt Controller” on page 134. The enabled inter-
rupt will trigger according to the INTMODE setting.

• Bit 3 – HSMODE: High-Speed Mode Select
By default, the analog comparator is in low-power mode, and this bit is zero. Setting this bit
selects high-speed mode for a shorter propagation delay. For details on actual performance,
refer to device datasheet.

• Bit 2:1 – HYSMODE[1:0]: Hysteresis Mode Select
These bits select the hysteresis mode according to Table 30-2. For details on actual hysteresis
levels, refer to the device datasheet.

• Bit 0 – ENABLE: Enable
Setting this bit enables analog comparator n.

Bit 7 6 5 4 3 2 1 0

+0x00 / +0x01 INTMODE[1:0] INTLVL[1:0] HSMODE HYSMODE[2:0] ENABLE ACnCTRL

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 30-1. Interrupt settings.

INTMODE[1:0] Group Configuration Description

00 BOTHEDGES Comparator interrupt or event on output toggle

01 – Reserved

10 FALLING Comparator interrupt or event on falling output edge

11 RISING Comparator interrupt or event on rising output edge

Table 30-2. Hysteresis settings.

HYSMODE[1:0] Group Configuration Description

00 NO No hysteresis

01 SMALL Small hysteresis

10 LARGE Large hysteresis

11 – Reserved
401
8331B–AVR–03/12

Atmel AVR XMEGA AU
30.9.2 ACnMUXCTRL – Analog Comparator n Mux Control register

• Bit 7:6 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

• Bit 5:3 – MUXPOS[2:0]: Positive Input MUX Selection
These bits select which input will be connected to the positive input of analog comparator n
according to Table 30-3.

• Bit 2:0 – MUXNEG[2:0]: Negative Input MUX Selection
These bits select which input will be connected to the negative input of analog comparator n
according to Table 30-4 on page 402.

Bit 7 6 5 4 3 2 1 0

+0x02 / +0x03 – – MUXPOS[2:0] MUXNEG[2:0] ACnMUXCTRL

Read/Write R R R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 30-3. Positive input MUX selection.

MUXPOS[2:0] Group Configuration Description

000 PIN0 Pin 0

001 PIN1 Pin 1

010 PIN2 Pin 2

011 PIN3 Pin 3

100 PIN4 Pin 4

101 PIN5 Pin 5

110 PIN6 Pin 6

111 DAC DAC output

Table 30-4. Negative input MUX selection.

MUXNEG[2:0] Group Configuration Negative Input MUX Selection

000 PIN0 Pin 0

001 PIN1 Pin 1

010 PIN3 Pin 3

011 PIN5 Pin 5

100 PIN7 Pin 7

101 DAC DAC output

110 BANDGAP Internal bandgap voltage

111 SCALER VCC voltage scaler
402
8331B–AVR–03/12

Atmel AVR XMEGA AU
30.9.3 CTRLA – Control register A

• Bit 7:2 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

• Bit 1 – AC1OUT: Analog Comparator 1 Output
Setting this bit makes the output of AC1 available on pin 6 of the port.

• Bit 0 – AC0OUT: Analog Comparator 0 Output
Setting this bit makes the output of AC0 available on pin 7 of the port.

30.9.4 CTRLB – Control register B

• Bit 7:6 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

• Bit 5:0 – SCALEFAC[5:0]: Voltage Scaling Factor
These bits define the scaling factor for the Vcc voltage scaler. The input to the analog compara-
tor, VSCALE, is:

30.9.5 WINCTRL – Window Function Control register

• Bit 7:5 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

• Bit 4 – WEN: Window Mode Enable
Setting this bit enables the analog comparator window mode.

Bit 7 6 5 4 3 2 1 0

+0x04 – – – – – – AC1OUT AC0OUT CTRLA

Read/Write R R R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x05 – – SCALEFAC[5:0] CTRLB

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

VSCALE
VCC SCALEFAC 1+()⋅

64
---=

Bit 7 6 5 4 3 2 1 0

+0x06 – – – WEN WINTMODE[1:0] WINTLVL[1:0] WINCTRL

Read/Write R R R R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
403
8331B–AVR–03/12

Atmel AVR XMEGA AU
• Bits 3:2 – WINTMODE[1:0]: Window Interrupt Mode Settings
These bits configure the interrupt mode for the analog comparator window mode according to
Table 30-5.

• Bits 1:0 – WINTLVL[1:0]: Window Interrupt Enable
These bits enable the analog comparator window mode interrupt and select the interrupt level,
as described in ”Interrupts and Programmable Multilevel Interrupt Controller” on page 134. The
enabled interrupt will trigger according to the WINTMODE setting.

30.9.6 STATUS – Status register

• Bits 7:6 – WSTATE[1:0]: Window Mode Current State
These bits show the current state of the signal if window mode is enabled according to Table 30-
6.

• Bit 5 – AC1STATE: Analog Comparator 1 Current State
This bit shows the current state of the output signal from AC1.

• Bit 4 – AC0STATE: Analog Comparator 0 Current State
This bit shows the current state of the output signal fromAC0.

• Bit 3 – Reserved
This bit is unused and reserved for future use. For compatibility with future devices, always write
this bit to zero when this register is written.

• Bit 2 – WIF: Analog Comparator Window Interrupt Flag
This is the interrupt flag for the window mode. WIF is set according to the WINTMODE setting in
the ”WINCTRL – Window Function Control register” on page 403.

Table 30-5. Window mode interrupt settings.

WINTMODE[1:0] Group Configuration Description

00 ABOVE Interrupt on signal above window

01 INSIDE Interrupt on signal inside window

10 BELOW Interrupt on signal below window

11 OUTSIDE Interrupt on signal outside window

Bit 7 6 5 4 3 2 1 0

+0x07 WSTATE[1:0] AC1STATE AC0STATE – WIF AC1IF AC0IF STATUS

Read/Write R/W R/W R/W R/W R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Table 30-6. Window mode current state.

WSTATE[1:0] Group Configuration Description

00 ABOVE Signal is above window

01 INSIDE Signal is inside window

10 BELOW Signal is below window

11 OUTSIDE Signa is outside window
404
8331B–AVR–03/12

Atmel AVR XMEGA AU
This flag is automatically cleared when the analog comparator window interrupt vector is exe-
cuted. The flag can also be cleared by writing a one to its bit location.

• Bit 1 – AC1IF: Analog Comparator 1 Interrupt Flag
This is the interrupt flag for AC1. AC1IF is set according to the INTMODE setting in the corre-
sponding ”ACnCTRL – Analog Comparator n Control register” on page 401.

This flag is automatically cleared when the analog comparator 1 interrupt vector is executed.
The flag can also be cleared by writing a one to its bit location.

• Bit 0 – AC0IF: Analog Comparator 0 Interrupt Flag
This is the interrupt flag for AC0. AC0IF is set according to the INTMODE setting in the corre-
sponding ”ACnCTRL – Analog Comparator n Control register” on page 401.

This flag is automatically cleared when the analog comparator 0 interrupt vector is executed.
The flag can also be cleared by writing a one to its bit location.

30.9.7 CURRCTRL – Current Source Control register

• Bit 7 – CURRENT: Current Source Enable
Setting this bit to one will enable the constant current source.

• Bit 6 – CURRMODE: Current Mode
Setting this bit to one will combine the two analog comparator current sources in order to double
the output current for each analog comparator.

• Bit 5:2 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

• Bit 1 – AC1CURR: AC1 Current Source Output Enable
Setting this bit to one will enable the constant current source output on the pin selected by MUX-
NEG in AC1MUXTRL.

• Bit 0 – AC0CURR: AC0 Current Source Output Enable
Setting this bit to one will enable the constant current source output on the pin selected by MUX-
NEG in AC0MUXTRL.

30.9.8 CURRCALIB – Current Source Calibration register

Bit 7 6 5 4 3 2 1 0

+0x08 CURRENT CURRMODE – – – – AC1CURR AC0CURR CURRCTRL

Read/Write R/W R/W R R R R R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x09 – – – – CALIB[3:0] CURRCALIB

Read/Write R R R R R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
405
8331B–AVR–03/12

Atmel AVR XMEGA AU
• Bits 7:4 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

• Bit 3:0 – CALIB[3:0]: Current Source Calibration
The constant current source is calibrated during production. A calibration value can be read from
the signature row and written to the CURRCALIB register from software. Refer to device data
sheet for default calibration values and user calibration range.
406
8331B–AVR–03/12

Atmel AVR XMEGA AU
30.10 Register Summary

30.11 Interrupt vector Summary

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page
+0x00 AC0CTRL INTMODE[1:0] INTLVL[1:0] HSMODE HYSMODE[1:0] ENABLE 401

+0x01 AC1CTRL INTMODE[1:0] INTLVL[1:0] HSMODE HYSMODE[1:0] ENABLE 401

+0x02 AC0MUXCTRL – – MUXPOS[2:0] MUXNEG[2:0] 402

+0x03 AC1MUXCTRL – – MUXPOS[2:0] MUXNEG[2:0] 402

+0x04 CTRLA – – – – – – AC1OUT ACOOUT 403

+0x05 CTRLB – – SCALEFAC5:0] 403

+0x06 WINCTRL – – – WEN WINTMODE[1:0] WINTLVL[1:0] 403

+0x07 STATUS WSTATE[1:0] AC1STATE AC0STATE – WIF AC1IF AC0IF 404

+0x08 CURRCTRL CURRENT CURRMODE – – – – AC1CURR AC0CURR 405

+0x09 CURRCALIB – – – – CALIB[3:0] 405

Table 30-7. Analog comparator interrupt vectors.

Offset Source Interrupt Description

0x00 COMP0_vect Analog comparator 0 interrupt vector

0x02 COMP1_vect Analog comparator 1 interrupt vector

0x04 WINDOW_vect Analog comparator window interrupt vector
407
8331B–AVR–03/12

Atmel AVR XMEGA AU
31. IEEE 1149.1 JTAG Boundary Scan Interface

31.1 Features
• JTAG (IEEE Std. 1149.1-2001 compliant) interface
• Boundary scan capabilities according to the JTAG standard
• Full scan of all I/O pins
• Supports the mandatory SAMPLE, IDCODE, PRELOAD, EXTEST, and BYPASS instructions
• Supports the optional HIGHZ and CLAMP instructions
• Supports the AVR-specific PDICOM instruction for accessing the PDI

31.2 Overview
The JTAG interface is mainly intended for testing PCBs by using the JTAG boundary scan capa-
bility. Secondarily, the JTAG interface is used to access the Program and Debug Interface (PDI)
in its optional JTAG mode.

The boundary scan chain has the capability of driving and observing the logic levels on I/O pins.
At the system level, all microcontroller or board components having JTAG capabilities are con-
nected serially by the TDI/TDO signals to form a long shift register. An external controller sets up
the devices to drive values at their output pins, and observes the input values received from
other devices. The controller compares the received data with the expected result. In this way,
boundary scan method provides a mechanism for testing the interconnections and integrity of
components on printed circuit boards by using only the four test access port (TAP) signals.

The IEEE Std. 1149.1-2001 defined mandatory JTAG instructions, IDCODE, BYPASS, SAM-
PLE/ PRELOAD, and EXTEST, together with the optional CLAMP and HIGHZ instructions can
be used for testing the printed circuit board. Alternatively, the HIGHZ instruction can be used to
place all I/O pins in an inactive drive state, while bypassing the boundary scan register chain of
the chip.

The AVR-specific PDICOM instruction makes it possible to use the PDI data register as an inter-
face for accessing the PDI for programming and debugging. This provides an alternative way to
access internal programming and debugging resources by using the JTAG interface. For more
details on PDI, programming, and on-chip debugging, refer to ”Program and Debug Interface” on
page 415.

The JTAGEN fuse must be programmed and the JTAGD bit in the MCUCR register must be
cleared to enable the JTAG interface and TAP. See ”FUSEBYTE4 – Fuse Byte4” on page 32,
and ”MCUCR – Control register” on page 48 for more details.

When using the JTAG interface for boundary scan, the JTAG TCK clock frequency can be
higher than the internal device frequency. A system clock in the device is not required for bound-
ary scan.

31.3 TAP - Test Access Port
The JTAG interface requires and uses four device I/O pins. In JTAG terminology, these pins
constitute the test access port,or TAP. These pins are:

• TMS: Test mode select. The pin is used for navigating through the TAP-controller state
machine

• TCK: Test clock. This is the JTAG clock signal, and all operation is synchronous to TCK
408
8331B–AVR–03/12

Atmel AVR XMEGA AU
• TDI: Test data in. Serial input data to be shifted in to the instruction register or data register
(scan chains)

• TDO: Test data out. Serial output data from the instruction register or data register

The IEEE Std. 1149.1-2001 also specifies an optional test reset signal, TRST. This signal is not
available.

When the JTAGEN fuse is unprogrammed or the JTAG disable bit is set, the JTAG interface is
disabled. The four TAP pins are normal port pins, and the TAP controller is in reset. When
enabled, the input TAP signals are internally pulled high and JTAG is enabled for boundary scan
operations.

Figure 31-1. TAP controller state diagram.

The TAP controller is a 16-state, finite state machine that controls the operation of the boundary
scan circuitry. The state transitions shown in Figure 31-1 depend on the signal present on TMS
(shown adjacent to each state transition) at the time of the rising edge on TCK. The initial state
after a power-on reset is the test logic reset state.

Assuming the present state is run test/idle, a typical scenario for using the JTAG interface is:

• At the TMS input, apply the sequence 1, 1, 0, 0 at the rising edges of TCK to enter the shift
instruction register, or shift IR, state. While in this state, shift the four bits of the JTAG
instruction into the JTAG instruction register from the TDI input at the rising edge of TCK. The
TMS input must be held low during input of the 3 lsbs in order to remain in the shift IR state.
The msb of the instruction is shifted in when this state is left by setting TMS high. While the
instruction is shifted in from the TDI pin, the captured IR state, 0x01, is shifted out on the

409
8331B–AVR–03/12

Atmel AVR XMEGA AU
TDO pin. The JTAG instruction selects a particular data register as the path between TDI and
TDO and controls the circuitry surrounding the selected data register

• Apply the TMS sequence 1, 1, 0 to reenter the run test/idle state. The instruction is latched
onto the parallel output from the shift register path in the update IR state. The exit IR, pause
IR, and exit2 IR states are used only for navigating the state machine

• At the TMS input, apply the sequence 1, 0, 0 at the rising edges of TCK to enter the shift data
register, or shift DR, state. While in this state, upload the selected data register (selected by
the present JTAG instruction in the JTAG instruction register) from the TDI input at the rising
edge of TCK. In order to remain in the shift DR state, the TMS input must be held low during
the input of all bits except the msb. The msb of the data is shifted in when this state is left by
setting TMS high. While the data register is shifted in from the TDI pin, the parallel inputs to
the data register captured in the capture DR state are shifted out on the TDO pin

• Apply the TMS sequence 1, 1, 0 to reenter the run test/idle state. If the selected data register
has a latched parallel output, the latching takes place in the update DR state. The exit DR,
pause DR, and exit2 DR states are used only for navigating the state machine.

As shown in the state diagram, the run test/idle state need not be entered between selecting
JTAG instructions and using data registers.

Note: Independently of the initial state of the TAP controller, the test logic reset state can always
be entered by holding TMS high for five TCK clock periods.

31.4 JTAG Instructions
The instruction register is four bits wide. Listed below are the JTAG instructions for boundary
scan operation and the PDICOM instruction used for accessing the PDI in JTAG mode.

The lsb is shifted in and out first for all shift registers.

The opcode for each instruction is shown beside the instruction name in hex format. The text
describes which data register is selected as the path between TDI and TDO for each instruction.

31.4.1 EXTEST; 0x1
EXTEST is the instruction for selecting the boundary scan chain as the data register for testing
circuitry external to the AVR XMEGA device package. The instruction is used for sampling exter-
nal pins and loading output pins with data. For the I/O port pins, both output control (DIR) and
output data (OUT) are controllable via the scan chain, while the output control and actual pin
value are observable. The contents of the latched outputs of the boundary scan chain are driven
out as soon as the JTAG instruction register is loaded with the EXTEST instruction.

The active states are:

• Capture DR: Data on the external pins are sampled into the boundary scan chain

• Shift DR: Data in the Boundary-scan Chain are shifted by the TCK input

• Update DR: Data from the scan chain are applied to output pins

31.4.2 IDCODE; 0x3
IDCODE is the instruction for selecting the 32-bit ID register as the data register. The ID register
consists of a version number, a device number, and the manufacturer code chosen by the Joint
Electron Devices Engineering Council (JEDEC). This is the default instruction after power up.
410
8331B–AVR–03/12

Atmel AVR XMEGA AU
The active states are:

• Capture DR: Data in the IDCODE register are sampled into the device identification register

• Shift DR: The IDCODE scan chain is shifted by the TCK input

31.4.3 SAMPLE/PRELOAD; 0x2
SAMPLE/PRELOAD is the instruction for preloading the output latches and taking a snapshot of
the input/output pins without affecting system operation. However, the output latches are not
connected to the pins. The boundary scan chain is selected as the data register. Since each of
the SAMPLE and PRELOAD instructions implements the functionality of the other, they share a
common binary value, and can be treated as a single, merged instruction.

The active states are:

• Capture DR: Data on the external pins are sampled into the boundary scan chain

• Shift DR: The boundary scan chain is shifted by the TCK input

• Update DR: Data from the boundary scan chain are applied to the output latches, but the
output latches are not connected to the pins

31.4.4 BYPASS; 0xf
BYPASS is the instruction for selecting the bypass register for the data register. This instruction
can be issued to make the shortest possible scan chain through the device.

The active states are:

• Capture DR: Loads a zero into the bypass register

• Shift DR: The bypass register cell between TDI and TDO is shifted

31.4.5 CLAMP; 0x4
CLAMP is an optional instruction that allows the state of the input/output pins to be determined
from the preloaded output latches. The instruction allows static pin values to be applied via the
boundary scan registers while bypassing these registers in the scan path, efficiently shortening
the total length of the serial test path. The bypass register is selected as the data register.

The active states are:

• Capture DR: Loads a zero into the bypass register

• Shift DR: The bypass register cell between TDI and TDO is shifted

31.4.6 HIGHZ; 0x5
HIGHZ is an optional instruction for putting all outputs in an inactive drive state (e.g., high imped-
ance). The bypass register is selected as the data register.

The active states are:

• Capture DR: Loads a zero into the bypass register

• Shift DR: The bypass register cell between TDI and TDO is shifted

31.4.7 PDICOM; 0x7
PDICOM is an AVR XMEGA specific instruction for using the JTAG TAP as an alternative inter-
face to the PDI.
411
8331B–AVR–03/12

Atmel AVR XMEGA AU
The active states are:

• Capture DR: Parallel data from the PDI are sampled into the PDICOM data register

• Shift DR: The PDICOM data register is shifted by the TCK input

• Update DR: Commands or operands are parallel-latched from the PDICOM data register into
the PDI

31.5 Boundary Scan Chain
The boundary scan chain has the capability of driving and observing the logic levels on the I/O
pins. To ensure a predictable device behavior during and after the EXTEST, CLAMP, and
HIGHZ instructions, the device is automatically put in reset. During active reset, the external
oscillators, analog modules, and non-default port pin settings (like pull-up/down, bus-keeper,
wired-AND/OR) are disabled. It should be noted that the current device and port pin state are
unaffected by the SAMPLE and PRELOAD instructions.

31.5.1 Scanning the Port Pins
Figure 31-2 on page 412 shows the boundary scan cell used for all the bidirectional port pins.
This cell is able to control and observe both pin direction and pin value via a two-stage shift reg-
ister. When no alternate port function is present, output control corresponds to the DIR register
value, output data corresponds to the OUT register value, and input data corresponds to the IN
register value (tapped before the input inverter and input synchronizer). Mode represents either
an active CLAMP or EXTEST instruction, while shift DR is set when the TAP controller is in its
shift DR state.

Figure 31-2. Boundary scan cell for bi-directional port pin.

DQ

D Q D Q

D Q

Input Data
(IN)

Output Data
(IN)

Output Control
(DIR)

Mode

Pn

Shift DR To next cell

From last cell Clock DR Update DR

0

1

0

1

0

0

1

1

En
412
8331B–AVR–03/12

Atmel AVR XMEGA AU
31.5.2 Scanning the PDI Pins
Two observe-only cells are inserted to make the combined RESET and PDI_CLK pin and the
PDI_DATA pin observable. Even though the PDI_DATA pin is bidirectional, it is only made
observable in order to avoid any extra logic on the PDI_DATA output path.

Figure 31-3. An observe-only input cell.

31.6 Data Registers
The supported data registers that can be connected between TDI and TDO are:

• Bypass register (Ref: register A in Figure 31-4 on page 413).

• Device identification register (Ref: register C in Figure 31-4 on page 413).

• Boundary scan chain (Ref: register D in Figure 31-4 on page 413).

• PDICOM data register (Ref: register B in Figure 31-4 on page 413)

Figure 31-4. JTAG data register overview.

D Q

Fr
om

 la
st

ce

ll

C
lo

ck
 D

R

To next cell

To system
logic

From system
pin

S
hi

ft
D

R

1

0

D

D

TDI

A

B B B

C C C C

TDO

TMS

D

D

D

D

D

D

D D D

I/O PORTS

PDI JTAG
TCK

to all TCK
registers

Internal registers

JT
A

G
 B

ou
nd

ar
y-

sc
an

 c
ha

in

TAP
CTRL
413
8331B–AVR–03/12

Atmel AVR XMEGA AU
31.6.1 Bypass Register
The bypass register consists of a single shift register stage. When the bypass register is
selected as the path between TDI and TDO, the register is reset to 0 when leaving the capture
DR controller state. The bypass register can be used to shorten the scan chain on a system
when the other devices are to be tested.

31.6.2 Device Identification Register

31.6.2.1 Version
Version is a 4-bit number identifying the revision of the device. The JTAG version number fol-
lows the revision of the device. Revision A is 0x0, revision B is 0x1, and so on.

31.6.2.2 Part Number
The part number is a 16-bit code identifying the device. Refer to the device data sheets to find
the correct number.

31.6.2.3 Manufacturer ID
The manufacturer ID is an 11-bit code identifying the manufacturer. For Atmel, this code is
0x01F.

31.6.3 Boundary Scan Chain
The boundary scan chain has the capability of driving and observing the logic levels on all I/O
pins. Refer to ”Boundary Scan Chain” on page 412 for a complete description.

31.6.4 PDICOM Data Register
The PDICOM data register is a 9-bit wide register used for serial-to-parallel and parallel-to-serial
conversions of data between the JTAG TAP and the PDI. For details, refer to ”Program and
Debug Interface” on page 415.

Figure 31-5. Device identification register.

MSB LSB

Bit 31 28 27 12 11 1 0

Device ID Version Part Number Manufacturer ID 1

4 bits 16 bits 11 bits 1 bit
414
8331B–AVR–03/12

Atmel AVR XMEGA AU
32. Program and Debug Interface

32.1 Features
• Programming

– External programming through PDI or JTAG interfaces
Minimal protocol overhead for fast operation
Built-in error detection and handling for reliable operation

– Boot loader support for programming through any communication interface
• Debugging

– Nonintrusive, real-time, on-chip debug system
– No software or hardware resources required from device except pin connection
– Program flow control

Go, Stop, Reset, Step Into, Step Over, Step Out, Run-to-Cursor
– Unlimited number of user program breakpoints
– Unlimited number of user data breakpoints, break on:

Data location read, write, or both read and write
Data location content equal or not equal to a value
Data location content is greater or smaller than a value
Data location content is within or outside a range

– No limitation on device clock frequency
• Program and Debug Interface (PDI)

– Two-pin interface for external programming and debugging
– Uses the Reset pin and a dedicated pin
– No I/O pins required during programming or debugging

• JTAG interface
– Four-pin, IEEE Std. 1149.1 compliant interface for programming and debugging
– Boundary scan capabilities according to IEEE Std. 1149.1 (JTAG)

32.2 Overview
The Program and Debug Interface (PDI) is an Atmel proprietary interface for external program-
ming and on-chip debugging of a device.

The PDI supports fast programming of nonvolatile memory (NVM) spaces; flash, EEPOM, fuses,
lock bits, and the user signature row. This is done by accessing the NVM controller and execut-
ing NVM controller commands, as described in ”Memory Programming” on page 431.

Debug is supported through an on-chip debug system that offers nonintrusive, real-time debug.
It does not require any software or hardware resources except for the device pin connection.
Using the Atmel tool chain, it offers complete program flow control and support for an unlimited
number of program and complex data breakpoints. Application debug can be done from a C or
other high-level language source code level, as well as from an assembler and disassembler
level.

Programming and debugging can be done through two physical interfaces. The primary one is
the PDI physical layer, which is available on all devices. This is a two-pin interface that uses the
Reset pin for the clock input (PDI_CLK) and one other dedicated pin for data input and output
(PDI_DATA). A JTAG interface is also available on most devices, and this can be used for pro-
gramming and debugging through the four-pin JTAG interface. The JTAG interface is IEEE Std.
415
8331B–AVR–03/12

Atmel AVR XMEGA AU
1149.1 compliant, and supports boundary scan. Any external programmer or on-chip debug-
ger/emulator can be directly connected to either of these interfaces. Unless otherwise stated, all
references to the PDI assume access through the PDI physical layer.

Figure 32-1. The PDI with JTAG and PDI physical layers and closely related modules (grey).

32.3 PDI Physical
The PDI physical layer handles the low-level serial communication. It uses a bidirectional, half-
duplex, synchronous serial receiver and transmitter (just as a USART in USRT mode). The
physical layer includes start-of-frame detection, frame error detection, parity generation, parity
error detection, and collision detection.

In addition to PDI_CLK and PDI_DATA, the PDI_DATA pin has an internal pull resistor, VCC and
GND must be connected between the External Programmer/debugger and the device. Figure
32-2 on page 416 shows a typical connection.

Figure 32-2. PDI connection.

The remainder of this section is intended for use only by third parties developing programmers
or programming support for Atmel AVR XMEGA devices.

PDI
Controller

JTAG Physical
(physical layer)

PDI Physical
(physical layer)

OCD

NVM
Controller

Program and Debug Interface (PDI)

PDI_CLK
PDI_DATA

TDO
TCK
TMI
TDI

NVM
Memories

Internal InterfacesPDIBUS

Connector

PDI_CLK

PDI_DATA

Vcc

Vcc
416
8331B–AVR–03/12

Atmel AVR XMEGA AU
32.3.1 Enabling
The PDI physical layer must be enabled before use. This is done by first forcing the PDI_DATA
line high for a period longer than the equivalent external reset minimum pulse width (refer to
device datasheet for external reset pulse width data). This will disable the RESET functionality of
the Reset pin, if not already disabled by the fuse settings.

Next, continue to keep the PDI_DATA line high for 16 PDI_CLK cycles. The first PDI_CLK cycle
must start no later than 100µs after the RESET functionality of the Reset pin is disabled. If this
does not occur in time, the enabling procedure must start over again. The enable sequence is
shown in Figure 32-3 on page 417.

Figure 32-3. PDI physical layer enable sequence.

The Reset pin is sampled when the PDI interface is enabled. The reset register is then set
according to the state of the Reset pin, preventing the device from running code after the reset
functionality of this pin is disabled.

32.3.2 Disabling
If the clock frequency on PDI_CLK is lower than approximately 10kHz, this is regarded as inac-
tivity on the clock line. This will automatically disable the PDI. If not disabled by a fuse, the reset
function of the Reset (PDI_CLK) pin is enabled again. This also means that the minimum pro-
gramming frequency is approximately 10kHz.

32.3.3 Frame Format and Characters
The PDI physical layer uses a frame format defined as one character of eight data bits, with a
start bit, a parity bit, and two stop bits.

Figure 32-4. PDI serial frame format.

Disable RESET function on Reset (PDI_CLK) pin Activate PDI

PDI_DATA

PDI_CLK

St Start bit, always low
(0-7) Data bits (0 to 7)

P Parity bit, even parity used

Sp1 Stop bit 1, always high
Sp2 Stop bit 2, always high

St 0 1 2 3 4 5 6 7 P Sp1

FRAME

Sp2(IDLE) (St/IDLE)
417
8331B–AVR–03/12

Atmel AVR XMEGA AU
Three different characters are used, DATA, BREAK, and IDLE. The BREAK character is equal
to a 12-bit length of low level. The IDLE character is equal to a 12- bit length of high level. The
BREAK and IDLE characters can be extended beyond the 12-bit length.

Figure 32-5. Characters and timing for the PDI physical layer.

32.3.4 Serial Transmission and Reception
The PDI physical layer is either in transmit (TX) or receive (RX) mode. By default, it is in RX
mode, waiting for a start bit.

The programmer and the PDI operate synchronously on the PDI_CLK provided by the program-
mer. The dependency between the clock edges and data sampling or data change is fixed. As
illustrated in Figure 32-6 on page 418, output data (either from the programmer or the PDI) is
always set up (changed) on the falling edge of PDI_CLK and sampled on the rising edge of
PDI_CLK.

Figure 32-6. Changing and sampling of data.

32.3.5 Serial Transmission
When a data transmission is initiated, by the PDI controller, the transmitter simply shifts out the
start bit, data bits, parity bit, and the two stop bits on the PDI_DATA line. The transmission
speed is dictated by the PDI_CLK signal. While in transmission mode, IDLE bits (high bits) are
automatically transmitted to fill possible gaps between successive DATA characters. If a colli-
sion is detected during transmission, the output driver is disabled, and the interface is put into
RX mode waiting for a BREAK character.

START 0 1 2 3 4 5 6 7 P STOP

 1 IDLE character

BREAK

IDLE

1 DATA character

1 BREAK character

PDI_CLK

PDI_DATA

SampleSample Sample
418
8331B–AVR–03/12

Atmel AVR XMEGA AU
32.3.6 Serial Reception
When a start bit is detected, the receiver starts to collect the eight data bits. If the parity bit does
not correspond to the parity of the data bits, a parity error has occurred. If one or both of the stop
bits are low, a frame error has occurred. If the parity bit is correct, and no frame error is detected,
the received data bits are available for the PDI controller.

When the PDI is in TX mode, a BREAK character signaled by the programmer will not be inter-
preted as a BREAK, but will instead cause a generic data collision. When the PDI is in RX mode,
a BREAK character will be recognized as a BREAK. By transmitting two successive BREAK
characters (which must be separated by one or more high bits), the last BREAK character will
always be recognized as a BREAK, regardless of whether the PDI was in TX or RX mode ini-
tially. This is because in TX mode the first BREAK is seen as a collision. The PDI then shifts to
RX mode and sees the second BREAK as break.

32.3.7 Direction Change
In order to ensure correct timing for half-duplex operation, a guard time mechanism is used.
When the PDI changes from RX mode to TX mode, a configurable number of IDLE bits are
inserted before the start bit is transmitted. The minimum transition time between RX and TX
mode is two IDLE cycles, and these are always inserted. The default guard time value is 128
bits.

Figure 32-7. PDI direction change by inserting IDLE bits.

The external programmer will loose control of the PDI_DATA line at the point where the PDI
changes from RX to TX mode. The guard time relaxes this critical phase of the communication.
When the programmer changes from RX mode to TX mode, a single IDLE bit, at minimum,
should be inserted before the start bit is transmitted.

32.3.8 Drive Contention and Collision Detection
In order to reduce the effect of drive contention (the PDI and the programmer driving the
PDI_DATA line at the same time), a mechanism for collision detection is used. The mechanism
is based on the way the PDI drives data out on the PDI_DATA line. As shown in Figure 32-8 on
page 420, the PDI output driver is active only when the output value changes (from 0-1 or 1-0).
Hence, if two or more successive bit values are the same, the value is actively driven only on the
first clock cycle. After this point, the PDI output driver is automatically tri-stated, and the
PDI_DATA pin has a bus keeper responsible for keeping the pin value unchanged until the out-
put driver is reenabled due to a change in the bit value.

PtS Sp1

1 DATA character

Sp2 IDLE bits PtS

1 DATA character

Sp1 Sp2

Dir. change

PDI DATA Receive (RX) PDI DATA Transmit (TX)

Data from
PDI interface

to Programmer

Data from
Programmer to

PDI interface

Guard time
IDLE bits

inserted
419
8331B–AVR–03/12

Atmel AVR XMEGA AU
Figure 32-8. Driving data out on the PDI_DATA using a bus keeper.

If the programmer and the PDI both drive the PDI_DATA line at the same time, drive contention
will occur, as illustrated in Figure 32-9 on page 420. Every time a bit value is kept for two or more
clock cycles, the PDI is able to verify that the correct bit value is driven on the PDI_DATA line. If
the programmer is driving the PDI_DATA line to the opposite bit value to what the PDI expects,
a collision is detected.

Figure 32-9. Drive contention and collision detection on the PDI_DATA line.

As long as the PDI transmits alternating ones and zeros, collisions cannot be detected, because
the PDI output driver will be active all the time, preventing polling of the PDI_DATA line. How-
ever, the two stop bits should always be transmitted as ones within a single frame, enabling
collision detection at least once per frame.

32.4 JTAG Physical
The JTAG physical layer handles the basic low-level serial communication over four I/O lines,
TMS, TCK, TDI, and TDO. The JTAG physical layer includes BREAK detection, parity error
detection, and parity generation. For all generic JTAG details, refer to ”IEEE 1149.1 JTAG
Boundary Scan Interface” on page 408.

32.4.1 Enabling
The JTAGEN fuse must be programmed and the JTAG disable bit in the MCU control register
must be cleared to enable the JTAG interface. This is done by default. When the JTAG PDICOM

1 0 1 1 0

Output enable

PDI_CLK

PDI Output

0 1
PDI_DATA

PDI_CLK

PDI Output

PDI_DATA

11X01

Programmer
output

1X

Collision detect

= Collision
420
8331B–AVR–03/12

Atmel AVR XMEGA AU
instruction is shifted into the JTAG instruction register, the JTAG interface can be used to
access the PDI for external programming and on-chip debugging.

32.4.2 Disabling
The JTAG interface can be disabled by unprogramming the JTAGEN fuse or by setting the
JTAG disable bit in the MCU control register from the application code.

32.4.3 JTAG Instruction Set
The Atmel XMEGA specific JTAG instruction set consist of eight instructions related to boundary
scan and PDI access for programming. For more details on JTAG and the general JTAG instruc-
tion set, refer to ”JTAG Instructions” on page 410.

32.4.3.1 The PDICOM Instruction
When the PDICOM instruction is shifted into the JTAG instruction register, the 9-bit PDI commu-
nication register is selected as the data register. Commands are shifted into the register as
results from previous commands are shifted out from the register. The active TAP controller
states are (see ”TAP - Test Access Port” on page 408):

• Capture DR: Parallel data from the PDI controller is sampled into the PDI communication
register

• Shift DR: The PDI communication register is shifted by the TCK input

• Update DR: Commands or operands are parallel-latched into registers in the PDI controller

32.4.4 Frame Format and Characters
The JTAG physical layer supports a fixed frame format. A serial frame is defined to be one char-
acter of eight data bits followed by one parity bit.

Figure 32-10. JTAG serial frame format

Three special data characters are used. Common among these is that the parity bit is inverted in
order to force a parity error upon reception. The BREAK character (0xBB+P1) is used by the
external programmer to force the PDI to abort any ongoing operation and bring the PDI control-
ler into a known state. The DELAY character (0xDB+P1) is used by the PDI to tell the
programmer that it has no data ready. The EMPTY character (0xEB+P1) is used by the PDI to
tell the programmer that it has no transmission pending (i.e., the PDI is in RX-mode).

(0-7) Data/command bits, least-significant bit sent first (0 to 7)
P Parity bit, even parity used

0 1 2 3 4 5 6 7 P

FRAME
421
8331B–AVR–03/12

Atmel AVR XMEGA AU
Figure 32-11. Special data characters.

32.4.5 Serial transmission and reception
The JTAG interface supports full-duplex communication. At the same time as input data is
shifted in on the TDI pin, output data is shifted out on the TDO pin. However, PDI communica-
tion relies on half-duplex data transfer. Due to this, the JTAG physical layer operates only in
either transmit (TX) or receive (RX) mode. The available JTAG bit channel is used for control
and status signalling.

The programmer and the JTAG interface operate synchronously on the TCK clock provided by
the programmer. The dependency between the clock edges and data sampling or data change
is fixed. As illustrated in Figure 32-12 on page 422, TDI and TDO is always set up (change) on
the falling edge of TCK, while data always should be sampled on the rising edge of TCK.

Figure 32-12. Changing and sampling data.

32.4.6 Serial Transmission
When data transmission is initiated, a data byte is loaded into the shift register and then out on
TDO. The parity bit is generated and appended to the data byte during transmission. The trans-
mission speed is given by the TCK signal.

If the PDI is in TX mode (as a response to an LD instruction), and a transmission request from
the PDI controller is pending when the TAP controller enters the capture DR state, valid data will
be parallel-loaded into the shift register, and a correct parity bit will be generated and transmitted
along with the data byte in the shift DR state.

If the PDI is in RX mode when the TAP controller enters the capture DR state, an EMPTY byte
will be loaded into the shift register, and the parity bit will be set (forcing a parity error) when data
is shifted out in the shift DR state. This situation occurs during normal PDI command and oper-
and reception.

P11 1 0 1 1 1 0 1

1 BREAK CHARACTER (BB+P1)

1 DELAY CHARACTER (DB+P1)

1 EMPTY CHARACTER (EB+P1)

P11 1 0 1 1 0 1 1

P11 1 0 1 0 1 1 1

TCK

TDI/TDO

SampleSample Sample
422
8331B–AVR–03/12

Atmel AVR XMEGA AU
If the PDI is in TX- mode (as a response to an LD instruction), but no transmission request from
the PDI controller is pending when the TAP controller enters the capture DR state, a DELAY
byte (0xDB) will be loaded into the shift register, and the parity bit will be set (forcing a parity
error) when data is shifted out in the shift DR state. This situation occurs during data transmis-
sion if the data to be transmitted is not yet available.

Figure 32-13 on page 423 shows an uninterrupted flow of data frames from the PDI as a
response to the repeated indirect LD instruction. In this example, the device is not able to return
data bytes faster than one valid byte per two transmitted frames. Thus, intermediate DELAY
characters are inserted.

Figure 32-13. Data not ready marking.

If a DELAY data frame is transmitted as a response to an LD instruction, the programmer should
interpret this as if the JTAG interface had no data ready for transmission in the previous capture
DR state. The programmer must initiate repeated transfers until a valid data byte is received.
The LD instruction is defined to return a specified number of valid frames, not just a number of
frames. Hence, if the programmer detects a DELAY character after transmitting an LD instruc-
tion, the LD instruction should not be retransmitted, because the first LD response would still be
pending.

32.4.7 Serial Reception
During reception, the PDI collects the eight data bits and the parity bit from TDI and shifts them
into the shift register. Every time a valid frame is received, the data is latched in to the update
DR state.

The parity checker calculates the parity (even mode) of the data bits in incoming frames and
compares the result with the parity bit from the serial frame. In case of a parity error, the PDI
controller is signaled.

The parity checker is active in both TX and RXmodes. If a parity error is detected, the received
data byte is evaluated and compared with the BREAK character (which will always generate a
parity error). In case the BREAK character is recognized, the PDI controller is signaled.

32.5 PDI Controller
The PDI controller performs data transmission/reception on a byte level, command decoding,
high-level direction control, control and status register access, exception handling, and clock
switching (PDI_CLK or TCK). The interaction between an external programmer and the PDI con-
troller is based on a scheme where the programmer transmits various types of requests to the
PDI controller, which in turn responds according to the specific request. A programmer request
comes in the form of an instruction, which may be followed by one or more byte operands. The
PDI controller response may be silent (e.g., a data byte is stored to a location within the device),
or it may involve data being returned to the programmer (e.g., a data byte is read from a location
within the device).

REP CNT LD *(ptr)

External
Programmer Device

0xDB 1 D0 P 0xDB 1 D1 P

FRAME 0 FRAME 1 FRAME 2 FRAME 3FRAME 0 FRAME 1 FRAME 2

Commands/data
423
8331B–AVR–03/12

Atmel AVR XMEGA AU
32.5.1 Switching between PDI and JTAG modes
The PDI controller uses either the JTAG or PDI physical layer for establishing a connection to
the programmer. Based on this, the PDI is in either JTAG or PDI mode. When one of the modes
is entered, the PDI controller registers will be initialized, and the correct clock source will be
selected. The PDI mode has higher priority than the JTAG mode. Hence, if the PDI mode is
enabled while the PDI controller is already in JTAG mode, the access layer will automatically
switch over to PDI mode. If switching physical layer without powering on/off the device, the
active layer should be disabled before the alternative physical layer is enabled.

32.5.2 Accessing Internal Interfaces
After an external programmer has established communication with the PDI, the internal inter-
faces are not accessible, by default. To get access to the NVM controller and the nonvolatile
memories for programming, a unique key must be signaled by using the KEY instruction. The
internal interfaces are accessed as one linear address space using a dedicated bus (PDIBUS)
between the PDI and the internal interfaces. The PDIBUS address space is shown in Figure 33-
3 on page 447. The NVM controller must be enabled for the PDI controller to have any access to
the NVM interface. The PDI controller can access the NVM and NVM controller in programming
mode only. The PDI controller does not need to access the NVM controller's data or address
registers when reading or writing NVM.

32.5.3 NVM Programming Key
The key that must be sent using the KEY instruction is 64 bits long. The key that will enable
NVM programming is:

0x1289AB45CDD888FF

32.5.4 Exception Handling
There are several situations that are considered exceptions from normal operation. The excep-
tions depend on whether the PDI is in RX or TX mode and whether PDI or JTAG mode is used.

While the PDI is in RX mode, the exceptions are:

• PDI:

– The physical layer detects a parity error

– The physical layer detects a frame error

– The physical layer recognizes a BREAK character (also detected as a frame error)

• JTAG:

– The physical layer detects a parity error

– The physical layer recognizes a BREAK character (also detected as a parity error)

While the PDI is in TX mode, the exceptions are:

• PDI:

– The physical layer detects a data collision

• JTAG:

– The physical layer detects a parity error (on the dummy data shifted in on TDI)

– The physical layer recognizes a BREAK character

Exceptions are signaled to the PDI controller. All ongoing operations are then aborted, and the
PDI is put in ERROR state. The PDI will remain in ERROR state until a BREAK is sent from the
external programmer, and this will bring the PDI back to its default RX state.
424
8331B–AVR–03/12

Atmel AVR XMEGA AU
Due to this mechanism, the programmer can always synchronize the protocol by transmitting
two successive BREAK characters.

32.5.5 Reset Signalling
Through the reset register, the programmer can issue a reset and force the device into reset.
After clearing the reset register, reset is released, unless some other reset source is active.

32.5.6 Instruction Set
The PDI has a small instruction set used for accessing both the PDI itself and the internal inter-
faces. All instructions are byte instructions. The instructions allow an external programmer to
access the PDI controller, the NVM controller and the nonvolatile memories.

32.5.6.1 LDS - Load Data from PDIBUS Data Space using Direct Addressing
The LDS instruction is used to load data from the PDIBUS data space for read out. The LDS
instruction is based on direct addressing, which means that the address must be given as an
argument to the instruction. Even though the protocol is based on byte-wise communication, the
LDS instruction supports multiple-byte addresses and data access. Four different address/data
sizes are supported: single-byte, word (two bytes), three-byte, and long (four bytes). Multiple-
byte access is broken down internally into repeated single-byte accesses, but this reduces pro-
tocol overhead. When using the LDS instruction, the address byte(s) must be transmitted before
the data transfer.

32.5.6.2 STS - Store Data to PDIBUS Data Space using Direct Addressing
The STS instruction is used to store data that are serially shifted into the physical layer shift reg-
ister to locations within the PDIBUS data space. The STS instruction is based on direct
addressing, which means that the address must be given as an argument to the instruction.
Even though the protocol is based on byte-wise communication, the ST instruction supports
multiple-bytes addresses and data access. Four different address/data sizes are supported: sin-
gle-byte, word (two bytes), three-byte, and long (four bytes). Multiple-byte access is broken
down internally into repeated single-byte accesses, but this reduces protocol overhead. When
using the STS instruction, the address byte(s) must be transmitted before the data transfer.

32.5.6.3 LD - Load Data from PDIBUS Data Space using Indirect Addressing
The LD instruction is used to load data from the PDIBUS data space into the physical layer shift
register for serial read out. The LD instruction is based on indirect addressing (pointer access),
which means that the address must be stored in the pointer register prior to the data access.
Indirect addressing can be combined with pointer increment. In addition to reading data from the
PDIBUS data space, the LD instruction can read the pointer register. Even though the protocol is
based on byte-wise communication, the LD instruction supports multiple-byte addresses and
data access. Four different address/data sizes are supported: single-byte, word (two bytes),
three-byte, and long (four bytes). Multiple-byte access is broken down internally into repeated
single-byte accesses, but this reduces the protocol overhead.

32.5.6.4 ST - Store Data to PDIBUS Data Space using Indirect Addressing
The ST instruction is used to store data that is serially shifted into the physical layer shift register
to locations within the PDIBUS data space. The ST instruction is based on indirect addressing
(pointer access), which means that the address must be stored in the pointer register prior to the
data access. Indirect addressing can be combined with pointer increment. In addition to writing
data to the PDIBUS data space, the ST instruction can write the pointer register. Even though
the protocol is based on byte-wise communication, the ST instruction supports multiple-bytes
425
8331B–AVR–03/12

Atmel AVR XMEGA AU
address - and data access. Four different address/data sizes are supported; byte, word, 3 bytes,
and long (4 bytes). Multiple-bytes access is internally broken down to repeated single-byte
accesses, but it reduces the protocol overhead.

32.5.6.5 LDCS - Load Data from PDI Control and Status Register Space
The LDCS instruction is used to load data from the PDI control and status registers into the
physical layer shift register for serial read out. The LDCS instruction supports only direct
addressing and single-byte access.

32.5.6.6 STCS - Store Data to PDI Control and Status Register Space
The STCS instruction is used to store data that are serially shifted into the physical layer shift
register to locations within the PDI control and status registers. The STCS instruction supports
only direct addressing and single-byte access.

32.5.6.7 KEY - Set Activation Key
The KEY instruction is used to communicate the activation key bytes required for activating the
NVM interfaces.

32.5.6.8 REPEAT - Set Instruction Repeat Counter
The REPEAT instruction is used to store count values that are serially shifted into the physical
layer shift register to the repeat counter register. The instruction that is loaded directly after the
REPEAT instruction operand(s) will be repeated a number of times according to the specified
repeat counter register value. Hence, the initial repeat counter value plus one gives the total
number of times the instruction will be executed. Setting the repeat counter register to zero
makes the following instruction run once without being repeated.

The REPEAT instruction cannot be repeated. The KEY instruction cannot be repeated, and will
override the current value of the repeat counter register.

32.5.7 Instruction Set Summary
The PDI instruction set summary is shown in Figure 32-14 on page 427.
426
8331B–AVR–03/12

Atmel AVR XMEGA AU
Figure 32-14. PDI instruction set summary.

32.6 Register Description - PDI Instruction and Addressing Registers
The PDI instruction and addressing registers are internal registers utilized for instruction decod-
ing and PDIBUS addressing. None of these registers are accessible as registers in a register
space.

32.6.1 Instruction Register
When an instruction is successfully shifted into the physical layer shift register, it is copied into
the instruction register. The instruction is retained until another instruction is loaded. The reason
for this is that the REPEAT command may force the same instruction to be run repeatedly,
requiring command decoding to be performed several times on the same instruction.

32.6.2 Pointer Register
The pointer register is used to store an address value that specifies locations within the PDIBUS
address space. During direct data access, the pointer register is updated by the specified num-
ber of address bytes given as operand bytes to an instruction. During indirect data access,

0 0LDS 0

Size A Size B Cmd

0 1 0STS

1 0 0LDCS

CS Address

1 1 0STCS

1 1 0 0 0KEY 1

1 0 0 0 0REPEAT 1

Size B

LDS

STS
ST

0
10
0

0

1
1 1

LD
0
0
0
0

Cmd

LDCS (LDS Control/Status)

STCS (STS Control/Status)
KEY

10
01

1 1

REPEAT
1
1
1
1

0 0

Size B - Data size
Byte

3 Bytes
Long (4 Bytes)

0
10
0

0

1
1 1

Word (2 Bytes)

CS Address (CS - Control/Status reg.)
0 00 Register 0

Register 2
Reserved

Register 1
0

0 00 1
0 10 0
0 10 1

Reserved1 11 1
......

0

0

Size A - Address size (direct access)
Byte

3 Bytes
Long (4 Bytes)

0
10
0

0

1
1 1

Word (2 Bytes)

0 0LD 1

Ptr Size A/B Cmd

0 1 1ST 0

0

0

0

Ptr - Pointer access (indirect access)
*(ptr)

ptr
ptr++ - Reserved

0
10
0

0

1
1 1

*(ptr++)

00
427
8331B–AVR–03/12

Atmel AVR XMEGA AU
addressing is based on an address already stored in the pointer register prior to the access
itself. Indirect data access can be optionally combined with pointer register post-increment. The
indirect access mode has an option that makes it possible to load or read the pointer register
without accessing any other registers. Any register update is performed in a little-endian fashion.
Hence, loading a single byte of the address register will always update the LSB while the most-
significant bytes are left unchanged.

The pointer register is not involved in addressing registers in the PDI control and status register
space (CSRS space).

32.6.3 Repeat Counter Register
The REPEAT instruction is always accompanied by one or more operand bytes that define the
number of times the next instruction should be repeated. These operand bytes are copied into
the repeat counter register upon reception. During the repeated executions of the instruction
immediately following the REPEAT instruction and its operands, the repeat counter register is
decremented until it reaches zero, indicating that all repetitions have completed. The repeat
counter is also involved in key reception.

32.6.4 Operand Count Register
Immediately after an instruction (except the LDCS and STCS instructions) a specified number of
operands or data bytes (given by the size parts of the instruction) are expected. The operand
count register is used to keep track of how many bytes have been transferred.
428
8331B–AVR–03/12

Atmel AVR XMEGA AU
32.7 Register Description – PDI Control and Status Registers
The PDI control and status registers are accessible in the PDI control and status register space
(CSRS) using the LDCS and STCS instructions. The CSRS contains registers directly involved
in configuration and status monitoring of the PDI itself.

32.7.1 STATUS – Status register

• Bit 7:2 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

• Bit 1 – NVMEN: Nonvolatile Memory Enable
This status bit is set when the key signalling enables the NVM programming interface. The exter-
nal programmer can poll this bit to verify successful enabling. Writing the NVMEN bit disables
the NVM interface.

• Bit 0 – Reserved
This bit is unused and reserved for future use. For compatibility with future devices, always write
this bit to zero when this register is written.

32.7.2 RESET – Reset register

• Bit 7:0 – RESET[7:0]: Reset Signature
When the reset signature, 0x59, is written to RESET, the device is forced into reset. The device
is kept in reset until RESET is written with a data value different from the reset signature. Read-
ing the lsb will return the status of the reset. The seven msbs will always return the value 0x00,
regardless of whether the device is in reset or not.

32.7.3 CTRL – Control register

• Bit 7:3 – Reserved
These bits are unused and reserved for future use. For compatibility with future devices, always
write these bits to zero when this register is written.

Bit 7 6 5 4 3 2 1 0

+0x00 – – – – – – NVMEN – STATUS

Read/Write R R R R R R R/W R

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x01 RESET[7:0] RESET

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0

Bit 7 6 5 4 3 2 1 0

+0x02 – – – – – GUARDTIME[2:0] CTRL

Read/Write R R R R R R/W R/W R/W

Initial Value 0 0 0 0 0 0 0 0
429
8331B–AVR–03/12

Atmel AVR XMEGA AU
• Bit 2:0 – GUARDTIME[2:0]: Guard Time
These bits specify the number of IDLE bits of guard time that are inserted in between PDI recep-
tion and transmission direction changes. The default guard time is 128 IDLE bits, and the
available settings are shown in Table 32-1 on page 430. In order to speed up the communica-
tion, the guard time should be set to the lowest safe configuration accepted. No guard time is
inserted when switching from TX to RX mode.

32.8 Register Summary

Table 32-1. Guard time settings.

GUARDTIME Number of IDLE Bits

000 128

001 64

010 32

011 16

100 8

101 4

110 2

111 2

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0 Page
+0x00 STATUS – – – – – – NVMEN – 429

+0x01 RESET RESET[7:0] 429

+0x02 CTRL – – – – – GUARDTIME[2:0] 429

+0x03 Reserved – – – – – – – –
430
8331B–AVR–03/12

Atmel AVR XMEGA AU
33. Memory Programming

33.1 Features
• Read and write access to all memory spaces from

– External programmers
– Application software self-programming

• Self-programming and boot loader support
– Read-while-write self-programming
– CPU can run and execute code while flash is being programmed
– Any communication interface can be used for program upload/download

• External programming
– Support for in-system and production programming
– Programming through serial PDI or JTAG interface

• High security with separate boot lock bits for:
– External programming access
– Boot loader section access
– Application section access
– Application table access

• Reset fuse to select reset vector address to the start of the
– Application section, or
– Boot loader section

33.2 Overview
This section describes how to program the nonvolatile memory (NVM) in Atmel AVR XMEGA
devices, and covers both self-programming and external programming. The NVM consists of the
flash program memory, user signature and calibration rows, fuses and lock bits, and EEPROM
data memory. For details on the actual memories, how they are organized, and the register
description for the NVM controller used to access the memories, refer to ”Memories” on page 20.

The NVM can be accessed for read and write from application software through self-program-
ming and from an external programmer. Accessing the NVM is done through the NVM controller,
and the two methods of programming are similar. Memory access is done by loading address
and/or data to the selected memory or NVM controller and using a set of commands and triggers
that make the NVM controller perform specific tasks on the nonvolatile memory.

From external programming, all memory spaces can be read and written, except for the produc-
tion signature row, which can only be read. The device can be programmed in-system and is
accessed through the PDI using the PDI or JTAG physical interfaces. ”External Programming”
on page 446 describes PDI and JTAG in detail.

Self-programming and boot loader support allows application software in the device to read and
write the flash, user signature row and EEPROM, write the lock bits to a more secure setting,
and read the production signature row and fuses. The flash allows read-while-write self-pro-
gramming, meaning that the CPU can continue to operate and execute code while the flash is
being programmed. ”Self-programming and Boot Loader Support” on page 435 describes this in
detail.

For both self-programming and external programming, it is possible to run a CRC check on the
flash or a section of the flash to verify its content after programming.
431
8331B–AVR–03/12

Atmel AVR XMEGA AU
The device can be locked to prevent reading and/or writing of the NVM. There are separate lock
bits for external programming access and self-programming access to the boot loader section,
application section, and application table section.

33.3 NVM Controller
Access to the nonvolatile memories is done through the NVM controller. It controls NVM timing
and access privileges, and holds the status of the NVM, and is the common NVM interface for
both external programming and self-programming. For more details, refer to ”Register Descrip-
tion” on page 452.

33.4 NVM Commands
The NVM controller has a set of commands used to perform tasks on the NVM. This is done by
writing the selected command to the NVM command register. In addition, data and addresses
must be read/written from/to the NVM data and address registers for memory read/write
operations.

When a selected command is loaded and address and data are set up for the operation, each
command has a trigger that will start the operation. Based on these triggers, there are three
main types of commands.

33.4.1 Action-triggered Commands
Action-triggered commands are triggered when the command execute (CMDEX) bit in the NVM
control register A (CTRLA) is written. Action-triggered commands typically are used for opera-
tions which do not read or write the NVM, such as the CRC check.

33.4.2 NVM Read-triggered Commands
NVM read-triggered commands are triggered when the NVM is read, and this is typically used
for NVM read operations.

33.4.3 NVM Write-triggered Commands
NVM write-triggered commands are triggered when the NVM is written, and this is typically used
for NVM write operations.

33.4.4 Write/Execute Protection
Most command triggers are protected from accidental modification/execution during self-pro-
gramming. This is done using the configuration change protection (CCP) feature, which requires
a special write or execute sequence in order to change a bit or execute an instruction. For
details on the CCP, refer to ”Configuration Change Protection” on page 13.

33.5 NVM Controller Busy Status
When the NVM controller is busy performing an operation, the busy flag in the NVM status regis-
ter is set and the following registers are blocked for write access:

• NVM command register

• NVM control A register

• NVM control B register

• NVM address registers

• NVM data registers
432
8331B–AVR–03/12

Atmel AVR XMEGA AU
This ensures that the given command is executed and the operations finished before the start of
a new operation. The external programmer or application software must ensure that the NVM is
not addressed when it is busy with a programming operation.

Programming any part of the NVM will automatically block:

• All programming to other parts of the NVM

• All loading/erasing of the flash and EEPROM page buffers

• All NVM reads from external programmers

• All NVM reads from the application section

During self-programming, interrupts must be disabled or the interrupt vector table must be
moved to the boot loader sections, as described in ”Interrupts and Programmable Multilevel
Interrupt Controller” on page 134.

33.6 Flash and EEPROM Page Buffers
The flash memory is updated page by page. The EEPROM can be updated on a byte-by-byte
and page-by-page basis. flash and EEPROM page programming is done by first filling the asso-
ciated page buffer, and then writing the entire page buffer to a selected page in flash or
EEPROM.

The size of the page and page buffers depends on the flash and EEPROM size in each device,
and details are described in the device’s datasheet.

33.6.1 Flash Page Buffer
The flash page buffer is filled one word at a time, and it must be erased before it can be loaded.
When loading the page buffer with new content, the result is a binary AND between the existing
content of the page buffer location and the new value. If the page buffer is already loaded once
after erase the location will most likely be corrupted.

Page buffer locations that are not loaded will have the value 0xFFFF, and this value will then be
programmed into the corresponding flash page locations.

The page buffer is automatically erased after:

• A device reset

• Executing the write flash page command

• Executing the erase and write flash page command

• Executing the signature row write command

• Executing the write lock bit command

33.6.2 EEPROM Page Buffer
The EEPROM page buffer is filled one byte at a time, and it must be erased before it can be
loaded. When loading the page buffer with new content, the result is a binary AND between the
existing content of the page buffer location and the new value. If the EEPROM page buffer is
already loaded once after erase the location will most likely be corrupted.

EEPROM page buffer locations that are loaded will get tagged by the NVM controller. During a
page write or page erase, only targed locations will be written or erased. Locations that are not
targed will not be written or erased, and the corresponding EEPROM location will remain
unchanged. This means that before an EEPROM page erase, data must be loaded to the
433
8331B–AVR–03/12

Atmel AVR XMEGA AU
selected page buffer location to tag them. When performing an EEPROM page erase, the actual
value of the tagged location does not matter.

The EEPROM page buffer is automatically erased after:

• A system reset

• Executing the write EEPROM page command

• Executing the erase and write EEPROM page command

• Executing the write lock bit and write fuse commands

33.7 Flash and EEPROM Programming Sequences
For page programming, filling the page buffers and writing the page buffer into flash or EEPROM
are two separate operations. The sequence is same for both self-programming and external
programming.

33.7.1 Flash Programming Sequence
Before programming a flash page with the data in the flash page buffer, the flash page must be
erased. Programming an un-erased flash page will corrupt its content.

The flash page buffer can be filled either before the erase flash Page operation or between a
erase flash page and a write flash page operation:

Alternative 1:

• Fill the flash page buffer

• Perform a flash page erase

• Perform a flash page write

Alternative 2:

• Fill the flash page buffer

• Perform an atomic page erase and write

Alternative 3, fill the buffer after a page erase:

• Perform a flash page erase

• Fill the flash page bufferPerform a flash page write

The NVM command set supports both atomic erase and write operations, and split page erase
and page write commands. This split commands enable shorter programming time for each
command, and the erase operations can be done during non-time-critical programming execu-
tion. When using alternative 1 or 2 above for self-programming, the boot loader provides an
effective read-modify-write feature, which allows the software to first read the page, do the nec-
essary changes, and then write back the modified data. If alternative 3 is used, it is not possible
to read the old data while loading, since the page is already erased. The page address must be
the same for both page erase and page write operations when using alternative 1 or 3.

33.7.2 EEPROM Programming Sequence
Before programming an EEPROM page with the tagged data bytes stored in the EEPROM page
buffer, the selected locations in the EEPROM page must be erased. Programming an unerased
EEPROM page will corrupt its content. The EEPROM page buffer must be loaded before any
page erase or page write operations:
434
8331B–AVR–03/12

Atmel AVR XMEGA AU
Alternative 1:

• Fill the EEPROM page buffer with the selected number of bytes

• Perform a EEPROM page erase

• Perform a EEPROM page write

Alternative 2:

• Fill the EEPROM page buffer with the selected number of bytes

• Perform an atomic EEPROM page erase and write

33.8 Protection of NVM
To protect the flash and EEPROM memories from write and/or read, lock bits can be set to
restrict access from external programmers and the application software. Refer to ”LOCKBITS –
Lock Bit register” on page 30 for details on the available lock bit settings and how to use them.

33.9 Preventing NVM Corruption
During periods when the VCC voltage is below the minimum operating voltage for the device, the
result from a flash memory write can be corrupt, as supply voltage is too low for the CPU and
the flash to operate properly.To ensure that the voltage is sufficient enough during a complete
programming sequence of the flash memory, a voltage detector using the POR threshold
(VPOT+) level is enabled. During chip erase and when the PDI is enabled the brownout detector
(BOD) is automatically enabled at its configured level.

Depending on the programming operation, if any of these Vcc voltage levels are reached, the
programming sequence will be aborted immediately. If this happens, the NVM programming
should be restarted when the power is sufficient again, in case the write sequence failed or only
partly succeeded.

33.10 CRC Functionality
It is possible to run an automatic cyclic redundancy check (CRC) on the flash program memory.
When NVM is used to control the CRC module, an even number of bytes are read, at least in the
flash range mode. If the user selects a range with an odd number of bytes, an extra byte will be
read, and the checksum will not correspond to the selected range.

Refer to ”CRC – Cyclic Redundancy Check Generator” on page 328 for more details.

33.11 Self-programming and Boot Loader Support
Reading and writing the EEPROM and flash memory from the application software in the device
is referred to as self-programming. A boot loader (application code located in the boot loader
section of the flash) can both read and write the flash program memory, user signature row, and
EEPROM, and write the lock bits to a more secure setting. Application code in the application
section can read from the flash, user signature row, calibration row, and fuses, and read and
write the EEPROM.

33.11.1 Flash Programming
The boot loader support provides a real read-while-write self-programming mechanism for
uploading new program code by the device itself. This feature allows flexible application soft-
ware updates controlled by the device using a boot loader application that reside in the boot
loader section in the flash. The boot loader can use any available communication interface and
associated protocol to read code and write (program) that code into the flash memory, or read
435
8331B–AVR–03/12

Atmel AVR XMEGA AU
out the program memory code. It has the capability to write into the entire flash, including the
boot loader section. The boot loader can thus modify itself, and it can also erase itself from the
flash if the feature is not needed anymore.

33.11.1.1 Application and Boot Loader Sections
The application and boot loader sections in the flash are different when it comes to self-
programming.

– When erasing or writing a page located inside the application section, the boot
loader section can be read during the operation, and thus the CPU can run and
execute code from the boot loader section

– When erasing or writing a page located inside the boot loader section, the CPU is
halted during the entire operation, and code cannot execute

The user signature row section has the same properties as the boot loader section.

33.11.1.2 Addressing the Flash
The Z-pointer is used to hold the flash memory address for read and write access. For more
details on the Z-pointer, refer to ”The X-, Y-, and Z- Registers” on page 11.

Since the flash is word accessed and organized in pages, the Z-pointer can be treated as having
two sections. The least-significant bits address the words within a page, while the most-signifi-
cant bits address the page within the flash. This is shown in Figure 33-1 on page 437. The word
address in the page (FWORD) is held by the bits [WORDMSB:1] in the Z-pointer. The remaining
bits [PAGEMSB:WORDMSB+1] in the Z-pointer hold the flash page address (FPAGE). Together
FWORD and FPAGE holds an absolute address to a word in the flash.

For flash read operations (ELPM and LPM), one byte is read at a time. For this, the least-signifi-
cant bit (bit 0) in the Z-pointer is used to select the low byte or high byte in the word address. If
this bit is 0, the low byte is read, and if this bit is 1 the high byte is read.

The size of FWORD and FPAGE will depend on the page and flash size in the device. Refer to
each device’s datasheet for details.

Once a programming operation is initiated, the address is latched and the Z-pointer can be
updated and used for other operations.

Table 33-1. Summary of self-programming functionality.

Section being Addressed during
Programming

Section that can be Read
during Programming CPU Halted?

Application section Boot loader section No

Boot loader section None Yes

User signature row section None Yes
436
8331B–AVR–03/12

Atmel AVR XMEGA AU
Figure 33-1. Flash addressing for self-programming.

33.11.2 NVM Flash Commands
The NVM commands that can be used for accessing the flash program memory, signature row
and calibration row are listed in Table 33-2.

For self-programming of the flash, the trigger for action-triggered commands is to set the
CMDEX bit in the NVM CTRLA register (CMDEX). The read-triggered commands are triggered
by executing the (E)LPM instruction (LPM). The write-triggered commands are triggered by exe-
cuting the SPM instruction (SPM).

The Change Protected column indicates whether the trigger is protected by the configuration
change protection (CCP) or not. This is a special sequence to write/execute the trigger during
self-programming. For more details, refer to ”CCP – Configuration Change Protection register”
on page 15. CCP is not required for external programming. The two last columns show the
address pointer used for addressing and the source/destination data register.

Section 33.11.1.1 on page 436 through Section 33.11.2.14 on page 441 explain in detail the
algorithm for each NVM operation.

FPAGE FWORD 0/1

BIT

Z-Pointer

0BSMDROWBSMEGAP 1

INSTRUCTION WORDPAGE

PAGEPROGRAM MEMORY

WORD ADDRESS
WITHIN A PAGE

PAGE ADDRESS
WITHIN THE FLASH

FWORD

00

01

02

PAGEEND

00

01

02

FLASHEND

FPAGE

Low/High Byte select for (E)LPM

Table 33-2. Flash self-programming commands .

CMD[6:0] Group Configuration Description Trigger
CPU
Halted

NVM
Busy

Change
Protected

Address
Pointer

Data
Registe
r

0x00 NO_OPERATION No operation / read flash -/(E)LPM -/N N -/N -/ Z-pointer -/Rd

Flash Page Buffer

0x23 LOAD_FLASH_BUFFER Load flash page buffer SPM N N N Z-pointer R1:R0

0x26 ERASE_FLASH_BUFFER Erase flash page buffer CMDEX N Y Y Z-pointer -

Flash

0x2B ERASE_FLASH_PAGE Erase flash page SPM N/Y(2) Y Y Z-pointer -
437
8331B–AVR–03/12

Atmel AVR XMEGA AU
Notes: 1. The flash range CRC command used byte addressing of the flash.

2. Will depend on the flash section (application or boot loader) that is actually addressed.

3. This command is qualified with the lock bits, and requires that the boot lock bits are unprogrammed.

4. When using a command that changes the normal behavior of the LPM command; READ_USER_SIG_ROW and
READ_CALIB_ROW; it is recommended to disable interrupts to ensure correct execution of the LPM instruction.

33.11.2.1 Read Flash
The (E)LPM instruction is used to read one byte from the flash memory.

1. Load the Z-pointer with the byte address to read.

2. Load the NVM command register (NVM CMD) with the no operation command.

3. Execute the LPM instruction.

The destination register will be loaded during the execution of the LPM instruction.

33.11.2.2 Erase Flash Page Buffer
The erase flash page buffer command is used to erase the flash page buffer.

1. Load the NVM CMD with the erase flash page buffer command.

2. Set the command execute bit (NVMEX) in the NVM control register A (NVM CTRLA).
This requires the timed CCP sequence during self-programming.

The NVM busy (BUSY) flag in the NVM status register (NVM STATUS) will be set until the page
buffer is erased.

0x02E WRITE_FLASH_PAGE Write flash page SPM N/Y(2) Y Y Z-pointer -

0x2F ERASE_WRITE_FLASH_PAGE Erase and write flash page SPM N/Y(2) Y Y Z-pointer -

0x3A FLASH_RANGE_CRC(3) Flash range CRC CMDEX Y Y Y DATA/ADDR(1) DATA

Application Section

0x20 ERASE_APP Erase application section SPM Y Y Y Z-pointer -

0x22 ERASE_APP_PAGE Erase application section page SPM N Y Y Z-pointer -

0x24 WRITE_APP_PAGE Write application section page SPM N Y Y Z-pointer -

0x25 ERASE_WRITE_APP_PAGE Erase and write application section page SPM N Y Y Z-pointer -

0x38 APP_CRC Application section CRC CMDEX Y Y Y - DATA

Boot Loader Section

0x2A ERASE_BOOT_PAGE Erase boot loader section page SPM Y Y Y Z-pointer -

0x2C WRITE_BOOT_PAGE Write boot loader section page SPM Y Y Y Z-pointer -

0x2D ERASE_WRITE_BOOT_PAGE Erase and write boot loader section page SPM Y Y Y Z-pointer -

0x39 BOOT_CRC Boot loader section CRC CMDEX Y Y Y - DATA

User Signature Row

0x01(4) READ_USER_SIG_ROW Read user signature row LPM N N N Z-pointer Rd

0x18 ERASE_USER_SIG_ROW Erase user signature row SPM Y Y Y - -

0x1A WRITE_USER_SIG_ROW Write user signature row SPM Y Y Y - -

Calibration Row

0x02(4) READ_CALIB_ROW Read calibration row LPM N N N Z-pointer Rd

Table 33-2. Flash self-programming commands (Continued).

CMD[6:0] Group Configuration Description Trigger
CPU
Halted

NVM
Busy

Change
Protected

Address
Pointer

Data
Registe
r

438
8331B–AVR–03/12

Atmel AVR XMEGA AU
33.11.2.3 Load Flash Page Buffer
The load flash page buffer command is used to load one word of data into the flash page buffer.

1. Load the NVM CMD register with the load flash page buffer command.

2. Load the Z-pointer with the word address to write.

3. Load the data word to be written into the R1:R0 registers.

4. Execute the SPM instruction. The SPM instruction is not protected when performing a
flash page buffer load.

Repeat step 2-4 until the complete flash page buffer is loaded. Unloaded locations will have the
value 0xFFFF.

33.11.2.4 Erase Flash Page
The erase flash page command is used to erase one page in the flash.

1. Load the Z-pointer with the flash page address to erase. The page address must be
written to FPAGE. Other bits in the Z-pointer will be ignored during this operation.

2. Load the NVM CMD register with the erase flash page command.

3. Execute the SPM instruction. This requires the timed CCP sequence during self-
programming.

The BUSY flag in the NVM STATUS register will be set until the erase operation is finished. The
flash section busy (FBUSY) flag is set as long the flash is busy, and the application section can-
not be accessed.

33.11.2.5 Write Flash Page
The write flash page command is used to write the flash page buffer into one flash page in the
flash.

1. Load the Z-pointer with the flash page to write. The page address must be written to
FPAGE. Other bits in the Z-pointer will be ignored during this operation.

2. Load the NVM CMD register with the write flash page command.

3. Execute the SPM instruction. This requires the timed CCP sequence during self-
programming.

The BUSY flag in the NVM STATUS register will be set until the write operation is finished. The
FBUSY flag is set as long the flash is busy, and the application section cannot be accessed.

33.11.2.6 Flash Range CRC
The flash range CRC command can be used to verify the content in an address range in flash
after a self-programming.

1. Load the NVM CMD register with the flash range CRC command.

2. Load the start byte address in the NVM address register (NVM ADDR).

3. Load the end byte address in NVM data register (NVM DATA).

4. Set the CMDEX bit in the NVM CTRLA register. This requires the timed CCP sequence
during self-programming.

The BUSY flag in the NVM STATUS register will be set, and the CPU is halted during the execu-
tion of the command.

The CRC checksum will be available in the NVM DATA register.
439
8331B–AVR–03/12

Atmel AVR XMEGA AU
In order to use the flash range CRC command, all the boot lock bits must be unprogrammed (no
locks). The command execution will be aborted if the boot lock bits for an accessed location are
set.

33.11.2.7 Erase Application Section
The erase application command is used to erase the complete application section.

1. Load the Z-pointer to point anywhere in the application section.

2. Load the NVM CMD register with the erase application section command

3. Execute the SPM instruction. This requires the timed CCP sequence during self-
programming.

The BUSY flag in the STATUS register will be set until the operation is finished. The CPU will be
halted during the complete execution of the command.

33.11.2.8 Erase Application Section / Boot Loader Section Page
The erase application section page erase and erase boot loader section page commands are
used to erase one page in the application section or boot loader section.

1. Load the Z-pointer with the flash page address to erase. The page address must be
written to ZPAGE. Other bits in the Z-pointer will be ignored during this operation.

2. Load the NVM CMD register with the erase application/boot section page command.

3. Execute the SPM instruction. This requires the timed CCP sequence during self-
programming.

The BUSY flag in the NVM STATUS register will be set until the erase operation is finished. The
FBUSY flag is set as long the flash is busy, and the application section cannot be accessed.

33.11.2.9 Application Section / Boot Loader Section Page Write
The write application section page and write boot loader section page commands are used to
write the flash page buffer into one flash page in the application section or boot loader section.

1. Load the Z-pointer with the flash page to write. The page address must be written to
FPAGE. Other bits in the Z-pointer will be ignored during this operation.

2. Load the NVM CMD register with the write application section/boot loader section page
command.

3. Execute the SPM instruction. This requires the timed CCP sequence during self-
programming.

The BUSY flag in the NVM STATUS register will be set until the write operation is finished. The
FBUSY flag is set as long the flash is busy, and the application section cannot be accessed.

An invalid page address in the Z-pointer will abort the NVM command. The erase application
section page command requires that the Z-pointer addresses the application section, and the
erase boot section page command requires that the Z-pointer addresses the boot loader
section.

33.11.2.10 Erase and Write Application Section / Boot Loader Section Page
The erase and write application section page and erase and write boot loader section page com-
mands are used to erase one flash page and then write the flash page buffer into that flash page
in the application section or boot loader section in one atomic operation.
440
8331B–AVR–03/12

Atmel AVR XMEGA AU
1. Load the Z-pointer with the flash page to write. The page address must be written to
FPAGE. Other bits in the Z-pointer will be ignored during this operation.

2. Load the NVM CMD register with the erase and write application section/boot loader
section page command.

3. Execute the SPM instruction. This requires the timed CCP sequence during self-
programming.

The BUSY flag in the NVM STATUS register will be set until the operation is finished. The
FBUSY flag is set as long as the flash is busy, and the application section cannot be accessed.

An invalid page address in the Z-pointer will abort the NVM command. The erase and write
application section command requires that the Z-pointer addresses the application section, and
the erase and write boot section page command requires that the Z-pointer addresses the boot
loader section.

33.11.2.11 Application Section / Boot Loader Section CRC
The application section CRC and boot loader section CRC commands can be used to verify the
application section and boot loader section content after self-programming.

1. Load the NVM CMD register with the application section/ boot load section CRC
command.

2. Set the CMDEX bit in the NVM CTRLA register. This requires the timed CCP sequence
during self-programming.

The BUSY flag in the NVM STATUS register will be set, and the CPU is halted during the execu-
tion of the CRC command. The CRC checksum will be available in the NVM data registers.

33.11.2.12 Erase User Signature Row
The erase user signature row command is used to erase the user signature row.

1. Load the NVM CMD register with the erase user signature row command.

2. Execute the SPM instruction. This requires the timed CCP sequence during self-
programming.

The BUSY flag in the NVM STATUS register will be set, and the CPU will be halted until the
erase operation is finished. The user signature row is NRWW.

33.11.2.13 Write User Signature Row
The write signature row command is used to write the flash page buffer into the user signature
row.

1. Set up the NVM CMD register to write user signature row command.

2. Execute the SPM instruction. This requires the timed CCP sequence during self-
programming.

The BUSY flag in the NVM STATUS register will be set until the operation is finished, and the
CPU will be halted during the write operation. The flash page buffer will be cleared during the
command execution after the write operation, but the CPU is not halted during this stage.

33.11.2.14 Read User Signature Row / Calibration Row
The read user signature row and read calibration row commands are used to read one byte from
the user signature row or calibration row.
441
8331B–AVR–03/12

Atmel AVR XMEGA AU
1. Load the Z-pointer with the byte address to read.

2. Load the NVM CMD register with the read user signature row / calibration row
command

3. Execute the LPM instruction.

The destination register will be loaded during the execution of the LPM instruction.

To ensure that LPM for reading flash will be executed correctly it is adviced to disable interrupt
while using either of these commands.

33.11.3 NVM Fuse and Lock Bit Commands
The NVM flash commands that can be used for accessing the fuses and lock bits are listed in
Table 33-3.

For self-programming of the fuses and lock bits, the trigger for action-triggered commands is to
set the CMDEX bit in the NVM CTRLA register (CMDEX). The read-triggered commands are
triggered by executing the (E)LPM instruction (LPM). The write-triggered commands are trig-
gered by a executing the SPM instruction (SPM).

The Change Protected column indicates whether the trigger is protected by the configuration
change protection (CCP) during self-programming or not. The last two columns show the
address pointer used for addressing and the source/destination data register.

Section 33.11.3.1 on page 442 through Section 33.11.3.2 on page 442 explain in detail the algo-
rithm for each NVM operation.

33.11.3.1 Write Lock Bits
The write lock bits command is used to program the boot lock bits to a more secure settings from
software.

1. Load the NVM DATA0 register with the new lock bit value.

2. Load the NVM CMD register with the write lock bit command.

3. Set the CMDEX bit in the NVM CTRLA register. This requires the timed CCP sequence
during self-programming.

The BUSY flag in the NVM STATUS register will be set until the command is finished. The CPU
is halted during the complete execution of the command.

This command can be executed from both the boot loader section and the application section.
The EEPROM and flash page buffers are automatically erased when the lock bits are written.

33.11.3.2 Read Fuses
The read fuses command is used to read the fuses from software.

1. Load the NVM ADDR register with the address of the fuse byte to read.

Table 33-3. Fuse and lock bit commands.

CMD[6:0] Group Configuration Description Trigger
CPU
Halted

Change
Protected

NVM
Busy

Address
Pointer

Data
Registe
r

0x00 NO_OPERATION No operation - - - - - -

Fuses and Lock Bits

0x07 READ_FUSES Read fuses CMDEX Y N Y ADDR DATA

0x08 WRITE_LOCK_BITS Write lock bits CMDEX N Y Y ADDR -
442
8331B–AVR–03/12

Atmel AVR XMEGA AU
2. Load the NVM CMD register with the read fuses command.

3. Set the CMDEX bit in the NVM CTRLA register. This requires the timed CCP sequence
during self-programming.

The result will be available in the NVM DATA0 register. The CPU is halted during the complete
execution of the command.

33.11.4 EEPROM Programming
The EEPROM can be read and written from application code in any part of the flash. Its is both
byte and page accessible. This means that either one byte or one page can be written to the
EEPROM at once. One byte is read from the EEPROM during a read.

33.11.4.1 Addressing the EEPROM
The EEPROM can be accessed through the NVM controller (I/O mapped), similar to accessing
the flash program memory, or it can be memory mapped into the data memory space to be
accessed similar to SRAM.

When accessing the EEPROM through the NVM controller, the NVM address (ADDR) register is
used to address the EEPROM, while the NVM data (DATA) register is used to store or load
EEPROM data.

For EEPROM page programming, the ADDR register can be treated as having two sections.
The least-significant bits address the bytes within a page, while the most-significant bits address
the page within the EEPROM. This is shown in Figure 33-2 on page 443. The byte address in
the page (E2BYTE) is held by the bits [BYTEMSB:0] in the ADDR register. The remaining bits
[PAGEMSB:BYTEMSB+1] in the ADDR register hold the EEPROM page address (E2PAGE).
Together E2BYTE and E2PAGE hold an absolute address to a byte in the EEPROM. The size of
E2WORD and E2PAGE will depend on the page and flash size in the device. Refer to the device
datasheet for details on this.

Figure 33-2. I/O mapped EEPROM addressing.

E2PAGE E2BYTE

BIT

NVM ADDR

0BSMETYBBSMEGAP

DATA BYTEPAGE

PAGEEEPROM MEMORY

BYTE ADDRESS
WITHIN A PAGE

PAGE ADDRESS
WITHIN THE EEPROM

E2BYTE

00

01

02

E2PAGEEND

E2PAGE

00

01

02

E2END
443
8331B–AVR–03/12

Atmel AVR XMEGA AU
When EEPROM memory mapping is enabled, loading a data byte into the EEPROM page buffer
can be performed through direct or indirect store instructions. Only the least-significant bits of
the EEPROM address are used to determine locations within the page buffer, but the complete
memory mapped EEPROM address is always required to ensure correct address mapping.
Reading from the EEPROM can be done directly using direct or indirect load instructions. When
a memory mapped EEPROM page buffer load operation is performed, the CPU is halted for two
cycles before the next instruction is executed.

When the EEPROM is memory mapped, the EEPROM page buffer load and EEPROM read
functionality from the NVM controller are disabled.

33.11.5 NVM EEPROM Commands
The NVM flash commands that can be used for accessing the EEPROM through the NVM con-
troller are listed in Table 33-4.

For self-programming of the EEPROM, the trigger for action-triggered commands is to set the
CMDEX bit in the NVM CTRLA register (CMDEX). The read-triggered command is triggered by
reading the NVM DATA0 register (DATA0).

The Change Protected column indicates whether the trigger is protected by the configuration
change protection (CCP) during self-programming or not. CCP is not required for external pro-
gramming. The last two columns show the address pointer used for addressing and the
source/destination data register.

Section 33.11.5.1 on page 444 through Section 33.11.5.7 on page 446 explain in detail the algo-
rithm for each EEPROM operation.

33.11.5.1 Load EEPROM Page Buffer
The load EEPROM page buffer command is used to load one byte into the EEPROM page
buffer.

1. Load the NVM CMD register with the load EEPROM page buffer command.

2. Load the NVM ADDR0 register with the address to write.

3. Load the NVM DATA0 register with the data to write. This will trigger the command.

Repeat steps 2-3 until the arbitrary number of bytes are loaded into the page buffer.

Table 33-4. EEPROM self-programming commands.

CMD[6:0] Group Configuration Description Trigger
CPU
Halted

Change
Protected

NVM
Busy

Address
Pointer

Data
Registe
r

0x00 NO_OPERATION No operation - - - - - -

EEPROM Page Buffer

0x33 LOAD_EEPROM_BUFFER Load EEPROM page buffer DATA0 N Y N ADDR DATA0

0x36 ERASE_EEPROM _BUFFER Erase EEPROM page buffer CMDEX N Y Y - -

EEPROM

0x32 ERASE_EEPROM_PAGE Erase EEPROM page CMDEX N Y Y ADDR -

0x34 WRITE_EEPROM_PAGE Write EEPROM page CMDEX N Y Y ADDR -

0x35 ERASE_WRITE_EEPROM_PAGE Erase and write EEPROM page CMDEX N Y Y ADDR -

0x30 ERASE_EEPROM Erase EEPROM CMDEX N Y Y - -

0x06 READ_EEPROM Read EEPROM CMDEX N Y N ADDR DATA0
444
8331B–AVR–03/12

Atmel AVR XMEGA AU
33.11.5.2 Erase EEPROM Page Buffer
The erase EEPROM page buffer command is used to erase the EEPROM page buffer.

1. Load the NVM CMD register with the erase EEPROM buffer command.

2. Set the CMDEX bit in the NVM CTRLA register. This requires the timed CCP sequence
during self-programming.

The BUSY flag in the NVM STATUS register will be set until the operation is finished.

33.11.5.3 Erase EEPROM Page
The erase EEPROM page command is used to erase one EEPROM page.

1. Set up the NVM CMD register to the erase EEPROM page command.

2. Load the NVM ADDR register with the addess of the EEPROM page to erase.

3. Set the CMDEX bit in the NVM CTRLA register. This requires the timed CCP sequence
during self-programming.

The BUSY flag in the NVM STATUS register will be set until the operation is finished.

The page erase commands will only erase the locations that are loaded and tagged in the
EEPROM page buffer.

33.11.5.4 Write EEPROM Page
The write EEPROM page command is used to write all locations loaded in the EEPROM page
buffer into one page in EEPROM. Only the locations that are loaded and tagged in the EEPROM
page buffer will be written.

1. Load the NVM CMD register with the write EEPROM page command.

2. Load the NVM ADDR register with the address of the EEPROM page to write.

3. Set the CMDEX bit in the NVM CTRLA register. This requires the timed CCP sequence
during self-programming.

The BUSY flag in the NVM STATUS register will be set until the operation is finished.

33.11.5.5 Erase and Write EEPROM Page
The erase and write EEPROM page command is used to first erase an EEPROM page and then
write the EEPROM page buffer into that page in EEPROM in one atomic operation.

1. Load the NVM CMD register with the erase and write EEPROM page command.

2. Load the NVM ADDR register with the address of the EEPROM page to write.

3. Set the CMDEX bit in the NVM CTRLA register. This requires the timed CCP sequence
during self-programming.

The BUSY flag in the NVM STATUS register will be set until the operation is finished.

33.11.5.6 Erase EEPROM
The erase EEPROM command is used to erase all locations in all EEPROM pages that are
loaded and tagged in the EEPROM page buffer.

1. Set up the NVM CMD register to the erase EPPROM command.

2. Set the CMDEX bit in the NVM CTRLA register. This requires the timed CCP sequence
during self-programming.
445
8331B–AVR–03/12

Atmel AVR XMEGA AU
The BUSY flag in the NVM STATUS register will be set until the operation is finished.

33.11.5.7 Read EEPROM
The read EEPROM command is used to read one byte from the EEPROM.

1. Load the NVM CMD register with the read EEPROM command.

2. Load the NVM ADDR register with the address to read.

3. Set the CMDEX bit in the NVM CTRLA register. This requires the timed CCP sequence
during self-programming.

The data byte read will be available in the NVM DATA0 register.

33.12 External Programming
External programming is the method for programming code and nonvolatile data into the device
from an external programmer or debugger. This can be done by both in-system or in mass pro-
duction programming.

For external programming, the device is accessed through the PDI and PDI controller, and using
either the JTAG or PDI physical connection. For details on PDI and JTAG and how to enable
and use the physical interface, refer to ”Program and Debug Interface” on page 415. The
remainder of this section assumes that the correct physical connection to the PDI is enabled.
Doing this all data and program memory spaces are mapped into the linear PDI memory space.
Figure 33-3 on page 447 shows the PDI memory space and the base address for each memory
space in the device.
446
8331B–AVR–03/12

Atmel AVR XMEGA AU
Figure 33-3. Memory map for PDI accessing the data and program memories.

33.12.1 Enabling External Programming Interface
NVM programming from the PDI requires enabling using the following steps:

1. Load the RESET register in the PDI with 0x59.

2. Load the NVM key in the PDI.

3. Poll NVMEN in the PDI status register (PDI STATUS) until NVMEN is set.

When the NVMEN bit in the PDI STATUS register is set, the NVM interface is enabled and
active from the PDI.

33.12.2 NVM Programming
When the PDI NVM interface is enabled, all memories in the device are memory mapped in the
PDI address space. The PDI controller does not need to access the NVM controller's address or

FLASH_BASE = 0x0800000
EPPROM_BASE = 0x08C0000
FUSE_BASE = 0x08F0020
DATAMEM_BASE = 0x1000000

APP_BASE = FLASH_BASE
BOOT_BASE = FLASH_BASE + SIZE_APPL
PROD_SIGNATURE_BASE = 0x008E0200
USER_SIGNATURE_BASE = 0x008E0400

0x0000000

FUSES

APPLICATION
SECTION

16 MB

BOOT SECTION

0x0800000

0x08F0020

TOP=0x1FFFFFF

EEPROM

0x08E0200
SIGNATURE ROW

0x08C0000
0x08C1000

DATAMEM
(mapped IO/SRAM) 16 MB

0x1000000

1 BYTE
447
8331B–AVR–03/12

Atmel AVR XMEGA AU
data registers, but the NVM controller must be loaded with the correct command (i.e., to read
from any NVM, the controller must be loaded with the NVM read command before loading data
from the PDIBUS address space). For the reminder of this section, all references to reading and
writing data or program memory addresses from the PDI refer to the memory map shown in Fig-
ure 33-3 on page 447.

The PDI uses byte addressing, and hence all memory addresses must be byte addresses.
When filling the flash or EEPROM page buffers, only the least-significant bits of the address are
used to determine locations within the page buffer. Still, the complete memory mapped address
for the flash or EEPROM page is required to ensure correct address mapping.

During programming (page erase and page write) when the NVM is busy, the NVM is blocked for
reading.

33.12.3 NVM Commands
The NVM commands that can be used for accessing the NVM memories from external program-
ming are listed in Table 33-5 on page 448. This is a superset of the commands available for self-
programming.

For external programming, the trigger for action-triggered commands is to set the CMDEX bit in
the NVM CTRLA register (CMDEX). The read-triggered commands are triggered by a direct or
indirect load instruction (LDS or LD) from the PDI (PDI read). The write-triggered commands are
triggered by a direct or indirect store instruction (STS or ST) from the PDI (PDI write).

”Chip Erase” on page 449 through ”Write Fuse/ Lock Bit” on page 451 explain in detail the algo-
rithm for each NVM operation. The commands are protected by the lock bits, and if read and
write lock is set, only the chip erase and flash CRC commands are available.

Table 33-5. NVM commands available for external programming.

CMD[6:0] Commands / Operation Trigger
Change
Protected NVM Busy

0x00 No operation - - -

0x40 Chip erase(1) CMDEX Y Y

0x43 Read NVM PDI Read N N

Flash Page Buffer

0x23 Load flash page buffer PDI Write N N

0x26 Erase flash page buffer CMDEX Y Y

Flash

0x2B Erase flash page PDI write N Y

0x2E Write flash page PDI write N Y

0x2F Erase and write flash page PDI write N Y

0x78 Flash CRC CMDEX Y Y

Application Section

0x20 Erase application section PDI write N Y

0x22 Erase application section page PDI write N Y

0x24 Write application section page PDI write N Y

0x25 Erase and write application section page PDI write N Y
448
8331B–AVR–03/12

Atmel AVR XMEGA AU
Notes: 1. If the EESAVE fuse is programmed, the EEPROM is preserved during chip erase.

33.12.3.1 Chip Erase
The chip erase command is used to erase the flash program memory, EEPROM and lock bits.
Erasing of the EEPROM depends on EESAVE fuse setting. Refer to ”FUSEBYTE5 – Fuse Byte
5” on page 34 for details. The user signature row, calibration row, and fuses are not affected.

1. Load the NVM CMD register with the chip erase command.

2. Set the CMDEX bit in the NVM CTRLA register. This requires the timed CCP sequence
during self-programming.

Once this operation starts, the PDI bus between the PDI controller and the NVM is disabled, and
the NVMEN bit in the PDI STATUS register is cleared until the operation is finished. Poll the
NVMEN bit until this is set, indicating that the PDI bus is enabled.

The BUSY flag in the NVM STATUS register will be set until the operation is finished.

33.12.3.2 Read NVM
The read NVM command is used to read the flash, EEPROM, fuses, and signature and calibra-
tion row sections.

0x38 Application section CRC CMDEX Y Y

Boot Loader Section

0x68 Erase boot section PDI write N Y

0x2A Erase boot loader section page PDI write N Y

0x2C Write boot loader section page PDI write N Y

0x2D Erase and write boot loader section page PDI write N Y

0x39 Boot loader section CRC NVMAA Y Y

Calibration and User Signature Sections

0x01 Read user signature row PDI read N N

0x18 Erase user signature row PDI write N Y

0x1A Write user signature row PDI write N Y

0x02 Read calibration row PDI read N N

Fuses and Lock Bits

0x07 Read fuse PDI read N N

0x4C Write fuse PDI write N Y

0x08 Write lock bits CMDEX Y Y

EEPROM Page Buffer

0x33 Load EEPROM page buffer PDI write N N

0x36 Erase EEPROM page buffer CMDEX Y Y

EEPROM

0x30 Erase EEPROM CMDEX Y Y

0x32 Erase EEPROM page PDI write N Y

0x34 Write EEPROM page PDI write N Y

0x35 Erase and write EEPROM page PDI write N Y

0x06 Read EEPROM PDI read N N

CMD[6:0] Commands / Operation Trigger
Change
Protected NVM Busy
449
8331B–AVR–03/12

Atmel AVR XMEGA AU
1. Load the NVM CMD register with the read NVM command.

2. Read the selected memory address by executing a PDI read operation.

Dedicated read EEPROM, read fuse, read signature row, and read calibration row commands
are also available for the various memory sections. The algorithm for these commands are the
same as for the read NVM command.

33.12.3.3 Erase Page Buffer
The erase flash page buffer and erase EEPROM page buffer commands are used to erase the
flash and EEPROM page buffers.

1. Load the NVM CMD register with the erase flash/EEPROM page buffer command.

2. Set the CMDEX bit in the NVM CTRLA register.

The BUSY flag in the NVM STATUS register will be set until the operation is completed.

33.12.3.4 Load Page Buffer
The load flash page buffer and load EEPROM page buffer commands are used to load one byte
of data into the flash and EEPROM page buffers.

1. Load the NVM CMD register with the load flash/EEPROM page buffer command.

2. Write the selected memory address by doing a PDI write operation.

Since the flash page buffer is word accessed and the PDI uses byte addressing, the PDI must
write the flash page buffer in the correct order. For the write operation, the low byte of the word
location must be written before the high byte. The low byte is then written into the temporary reg-
ister. The PDI then writes the high byte of the word location, and the low byte is then written into
the word location page buffer in the same clock cycle.

The PDI interface is automatically halted before the next PDI instruction can be executed.

33.12.3.5 Erase Page
The erase application section page, erase boot loader section page, erase user signature row,
and erase EEPROM page commands are used to erase one page in the selected memory
space.

1. Load the NVM CMD register with erase application section/boot loader section/user
signature row/EEPROM page command.

2. Set the CMDEX bit in the NVM CTRLA register.

The BUSY flag in the NVM STATUS register will be set until the operation is finished.

33.12.3.6 Write Page
The write application section page, write boot loader section page, write user signature row, and
write EEPROM page commands are used to write a loaded flash/EEPROM page buffer into the
selected memory space.

1. Load the NVM CMD register with write application section/boot loader section/user sig-
nature row/EEPROM page command.

2. Write the selected page by doing a PDI write. The page is written by addressing any
byte location within the page.

The BUSY flag in the NVM STATUS register will be set until the operation is finished.
450
8331B–AVR–03/12

Atmel AVR XMEGA AU
33.12.3.7 Erase and Write Page
The erase and write application section page, erase and write boot loader section page, and
erase and write EEPROM page commands are used to erase one page and then write a loaded
flash/EEPROM page buffer into that page in the selected memory space in one atomic
operation.

1. Load the NVM CMD register with erase and write application section/boot loader sec-
tion/user signature row/EEPROM page command.

2. Write the selected page by doing a PDI write. The page is written by addressing any
byte location within the page.

The BUSY flag in the NVM STATUS register will be set until the operation is finished.

33.12.3.8 Erase Application/ Boot Loader/ EEPROM Section
The erase application section, erase boot loader section, and erase EEPROM section
commands are used to erase the complete selected section.

1. Load the NVM CMD register with Erase Application/ Boot/ EEPROM Section command

2. Set the CMDEX bit in the NVM CTRLA register.

The BUSY flag in the NVM STATUS register will be set until the operation is finished.

33.12.3.9 Application / Boot Section CRC
The application section CRC and boot loader section CRC commands can be used to verify the
content of the selected section after programming.

1. Load the NVM CMD register with application/ boot loader section CRC command.

2. Set the CMDEX bit in the NVM CTRLA register. This requires the timed CCP sequence
during self-programming.

The BUSY flag in the NVM STATUS register will be set until the operation is finished. The CRC
checksum will be available in the NVM DATA register.

33.12.3.10 Flash CRC
The flash CRC command can be used to verify the content of the flash program memory after
programming. The command can be executed independently of the lock bit state.

1. Load the NVM CMD register with flash CRC command.

2. Set the CMDEX bit in the NVM CTRLA register.

Once this operation starts, the PDI bus between the PDI controller and the NVM is disabled, and
the NVMEN bit in the PDI STATUS register is cleared until the operation is finished. Poll the
NVMEN bit until this is set again, indicting the PDI bus is enabled.

The BUSY flag in the NVM STATUS register will be set until the operation is finished. The CRC
checksum will be available in the NVM DATA register.

33.12.3.11 Write Fuse/ Lock Bit
The write fuse and write lock bit commands are used to write the fuses and the lock bits to a
more secure setting.

1. Load the NVM CMD register with the write fuse/ lock bit command.

2. Write the selected fuse or lock bits by doing a PDI write operation.

The BUSY flag in the NVM STATUS register will be set until the command is finished.

For lock bit write, the lock bit write command can also be used.
451
8331B–AVR–03/12

Atmel AVR XMEGA AU
33.13 Register Description
Refer to ”Register Description – NVM Controller” on page 26 for a complete register description
of the NVM controller.

Refer to ”Register Description – PDI Control and Status Registers” on page 429 for a complete
register description of the PDI.

33.14 Register Summary
Refer to ”Register Description – NVM Controller” on page 26 for a complete register summary of
the NVM controller.

Refer to ”Register Summary” on page 430 for a complete register summary of the PDI.
452
8331B–AVR–03/12

Atmel AVR XMEGA AU
34. Peripheral Module Address Map

The address maps show the base address for each peripheral and module in XMEGA. All
peripherals and modules are not present in all XMEGA devices, refer to device data sheet for
the peripherals module address map for a specific device.

Table 34-1. Peripheral module address map.

Base address Name Description Page

0x0000 GPIO General purpose IO registers 52

0x0010 VPORT0 Virtual Port 0

162
0x0014 VPORT1 Virtual Port 1

0x0018 VPORT2 Virtual Port 2

0x001C VPORT3 Virtual Port 2

0x0030 CPU CPU 18

0x0040 CLK Clock control 103

0x0048 SLEEP Sleep controller 110

0x0050 OSC Oscillator control 103

0x0060 DFLLRC32M DFLL for the 32 MHz internal RC oscillator
103

0x0068 DFLLRC2M DFLL for the 2 MHz RC oscillator

0x0070 PR Power reduction 110

0x0078 RST Reset controller 118

0x0080 WDT Watch-dog timer 133

0x0090 MCU MCU control 52

0x00A0 PMIC Programmable multilevel interrupt controller 142

0x00B0 PORTCFG Port configuration 162

0x00C0 AES AES module 327

0x00D0 CRC CRC module 327

0x00F0 VBAT Battery backup system 127

0x0100 DMA DMA controller 58

0x0180 EVSYS Event system 81

0x01C0 NVM Non volatile memory (NVM) controller 50

0x0200 ADCA Analog to digital converter on port A
381

0x0200 ADCB Analog to digital converter on port B

0x0300 DACA Digital to analog converter on port A
392

0x0320 DACB Digital to analog converter on port B
453
8331B–AVR–03/12

Atmel AVR XMEGA AU
0x0380 ACA Analog comparator pair on port A
402

0x0390 ACB Analog comparator pair on port B

0x0400 RTC Real time counter 226

0x0420 RTC32 32-bit Real time counter 234

0x0440 EBI External bus interface 355

0x0480 TWIC Two wire interface on port C

286
0x0490 TWID Two wire interface on port D

0x04A0 TWIE Two wire interface on port E

0x04B0 TWIF Two wire interface on port F

0x04C0 USB USB device 261

0x0600 PORTA Port A

162

0x0620 PORTB Port B

0x0640 PORTC Port C

0x0660 PORTD Port D

0x0680 PORTE Port E

0x06A0 PORTF Port F

0x06E0 PORTH Port H

0x0700 PORTJ Port J

0x0720 PORTK Port K

0x07C0 PORTQ Port Q

0x07E0 PORTR Port R

0x0800 TCC0 Timer/counter 0 on port C
192

0x0840 TCC1 Timer/counter 1 on port C

0x0880 AWEXC Advanced waveform extension on port C 216

0x0890 HIRESC High resolution extension on port C 218

0x08A0 USARTC0 USART 0 on port C
315

0x08B0 USARTC1 USART 1 on port C

0x08C0 SPIC Serial peripheral interface on port C 292

0x08F8 IRCOM Infrared communication mModule 319

0x0900 TCD0 Timer/counter 0 on port D
192

0x0940 TCD1 Timer/counter 1 on port D

0x0980 AWEXD Advanced waveform extension on port D 216

0x0990 HIRESD High resolution extension on port D 218

Base address Name Description Page
454
8331B–AVR–03/12

Atmel AVR XMEGA AU
0x09A0 USARTD0 USART 0 on port D
315

0x09B0 USARTD1 USART 1 on port D

0x09C0 SPID Serial peripheral interface on port D 292

0x0A00 TCE0 Timer/counter 0 on port E
192

0x0A40 TCE1 Timer/counter 1 on port E

0x0A80 AWEXE Advanced waveform extensionon port E 216

0x0A90 HIRESE High resolution extension on port E 218

0x0AA0 USARTE0 USART 0 on port E
315

0x0AB0 USARTE1 USART 1 on port E

0x0AC0 SPIE Serial peripheral interface on port E 292

0x0B00 TCF0 Timer/counter 0 on port F
192

0x0B40 TCF1 Timer/counter 1 on port F

0x0B80 AWEXF Advanced waveform extension on port F 216

0x0B90 HIRESF High resolution extension on port F 218

0x0BA0 USARTF0 USART 0 on port F
315

0x0BB0 USARTF1 USART 1 on port F

0x0BC0 SPIF Serial peripheral interface on port F 292

Base address Name Description Page
455
8331B–AVR–03/12

Atmel AVR XMEGA AU
35. Instruction Set Summary
Mnemonics Operands Description Operation Flags #Clocks

Arithmetic and Logic Instructions

ADD Rd, Rr Add without Carry Rd ← Rd + Rr Z,C,N,V,S,H 1

ADC Rd, Rr Add with Carry Rd ← Rd + Rr + C Z,C,N,V,S,H 1

ADIW Rd, K Add Immediate to Word Rd ← Rd + 1:Rd + K Z,C,N,V,S 2

SUB Rd, Rr Subtract without Carry Rd ← Rd - Rr Z,C,N,V,S,H 1

SUBI Rd, K Subtract Immediate Rd ← Rd - K Z,C,N,V,S,H 1

SBC Rd, Rr Subtract with Carry Rd ← Rd - Rr - C Z,C,N,V,S,H 1

SBCI Rd, K Subtract Immediate with Carry Rd ← Rd - K - C Z,C,N,V,S,H 1

SBIW Rd, K Subtract Immediate from Word Rd + 1:Rd ← Rd + 1:Rd - K Z,C,N,V,S 2

AND Rd, Rr Logical AND Rd ← Rd • Rr Z,N,V,S 1

ANDI Rd, K Logical AND with Immediate Rd ← Rd • K Z,N,V,S 1

OR Rd, Rr Logical OR Rd ← Rd v Rr Z,N,V,S 1

ORI Rd, K Logical OR with Immediate Rd ← Rd v K Z,N,V,S 1

EOR Rd, Rr Exclusive OR Rd ← Rd ⊕ Rr Z,N,V,S 1

COM Rd One’s Complement Rd ← $FF - Rd Z,C,N,V,S 1

NEG Rd Two’s Complement Rd ← $00 - Rd Z,C,N,V,S,H 1

SBR Rd,K Set Bit(s) in Register Rd ← Rd v K Z,N,V,S 1

CBR Rd,K Clear Bit(s) in Register Rd ← Rd • ($FFh - K) Z,N,V,S 1

INC Rd Increment Rd ← Rd + 1 Z,N,V,S 1

DEC Rd Decrement Rd ← Rd - 1 Z,N,V,S 1

TST Rd Test for Zero or Minus Rd ← Rd • Rd Z,N,V,S 1

CLR Rd Clear Register Rd ← Rd ⊕ Rd Z,N,V,S 1

SER Rd Set Register Rd ← $FF None 1

MUL Rd,Rr Multiply Unsigned R1:R0 ← Rd x Rr (UU) Z,C 2

MULS Rd,Rr Multiply Signed R1:R0 ← Rd x Rr (SS) Z,C 2

MULSU Rd,Rr Multiply Signed with Unsigned R1:R0 ← Rd x Rr (SU) Z,C 2

FMUL Rd,Rr Fractional Multiply Unsigned R1:R0 ← Rd x Rr<<1 (UU) Z,C 2

FMULS Rd,Rr Fractional Multiply Signed R1:R0 ← Rd x Rr<<1 (SS) Z,C 2

FMULSU Rd,Rr Fractional Multiply Signed with Unsigned R1:R0 ← Rd x Rr<<1 (SU) Z,C 2

DES K Data Encryption if (H = 0) then R15:R0
else if (H = 1) then R15:R0

←
←

Encrypt(R15:R0, K)
Decrypt(R15:R0, K)

1/2

Branch instructions

RJMP k Relative Jump PC ← PC + k + 1 None 2

IJMP Indirect Jump to (Z) PC(15:0)
PC(21:16)

←
←

Z,
0

None 2

EIJMP Extended Indirect Jump to (Z) PC(15:0)
PC(21:16)

←
←

Z,
EIND

None 2

JMP k Jump PC ← k None 3
456
8331B–AVR–03/12

Atmel AVR XMEGA AU
RCALL k Relative Call Subroutine PC ← PC + k + 1 None 2 / 3(1)

ICALL Indirect Call to (Z) PC(15:0)
PC(21:16)

←
←

Z,
0

None 2 / 3(1)

EICALL Extended Indirect Call to (Z) PC(15:0)
PC(21:16)

←
←

Z,
EIND

None 3(1)

CALL k call Subroutine PC ← k None 3 / 4(1)

RET Subroutine Return PC ← STACK None 4 / 5(1)

RETI Interrupt Return PC ← STACK I 4 / 5(1)

CPSE Rd,Rr Compare, Skip if Equal if (Rd = Rr) PC ← PC + 2 or 3 None 1 / 2 / 3

CP Rd,Rr Compare Rd - Rr Z,C,N,V,S,H 1

CPC Rd,Rr Compare with Carry Rd - Rr - C Z,C,N,V,S,H 1

CPI Rd,K Compare with Immediate Rd - K Z,C,N,V,S,H 1

SBRC Rr, b Skip if Bit in Register Cleared if (Rr(b) = 0) PC ← PC + 2 or 3 None 1 / 2 / 3

SBRS Rr, b Skip if Bit in Register Set if (Rr(b) = 1) PC ← PC + 2 or 3 None 1 / 2 / 3

SBIC A, b Skip if Bit in I/O Register Cleared if (I/O(A,b) = 0) PC ← PC + 2 or 3 None 2 / 3 / 4

SBIS A, b Skip if Bit in I/O Register Set If (I/O(A,b) =1) PC ← PC + 2 or 3 None 2 / 3 / 4

BRBS s, k Branch if Status Flag Set if (SREG(s) = 1) then PC ← PC + k + 1 None 1 / 2

BRBC s, k Branch if Status Flag Cleared if (SREG(s) = 0) then PC ← PC + k + 1 None 1 / 2

BREQ k Branch if Equal if (Z = 1) then PC ← PC + k + 1 None 1 / 2

BRNE k Branch if Not Equal if (Z = 0) then PC ← PC + k + 1 None 1 / 2

BRCS k Branch if Carry Set if (C = 1) then PC ← PC + k + 1 None 1 / 2

BRCC k Branch if Carry Cleared if (C = 0) then PC ← PC + k + 1 None 1 / 2

BRSH k Branch if Same or Higher if (C = 0) then PC ← PC + k + 1 None 1 / 2

BRLO k Branch if Lower if (C = 1) then PC ← PC + k + 1 None 1 / 2

BRMI k Branch if Minus if (N = 1) then PC ← PC + k + 1 None 1 / 2

BRPL k Branch if Plus if (N = 0) then PC ← PC + k + 1 None 1 / 2

BRGE k Branch if Greater or Equal, Signed if (N ⊕ V= 0) then PC ← PC + k + 1 None 1 / 2

BRLT k Branch if Less Than, Signed if (N ⊕ V= 1) then PC ← PC + k + 1 None 1 / 2

BRHS k Branch if Half Carry Flag Set if (H = 1) then PC ← PC + k + 1 None 1 / 2

BRHC k Branch if Half Carry Flag Cleared if (H = 0) then PC ← PC + k + 1 None 1 / 2

BRTS k Branch if T Flag Set if (T = 1) then PC ← PC + k + 1 None 1 / 2

BRTC k Branch if T Flag Cleared if (T = 0) then PC ← PC + k + 1 None 1 / 2

BRVS k Branch if Overflow Flag is Set if (V = 1) then PC ← PC + k + 1 None 1 / 2

BRVC k Branch if Overflow Flag is Cleared if (V = 0) then PC ← PC + k + 1 None 1 / 2

BRIE k Branch if Interrupt Enabled if (I = 1) then PC ← PC + k + 1 None 1 / 2

BRID k Branch if Interrupt Disabled if (I = 0) then PC ← PC + k + 1 None 1 / 2

Data transfer instructions

MOV Rd, Rr Copy Register Rd ← Rr None 1

Mnemonics Operands Description Operation Flags #Clocks
457
8331B–AVR–03/12

Atmel AVR XMEGA AU
MOVW Rd, Rr Copy Register Pair Rd+1:Rd ← Rr+1:Rr None 1

LDI Rd, K Load Immediate Rd ← K None 1

LDS Rd, k Load Direct from data space Rd ← (k) None 2(1)(2)

LD Rd, X Load Indirect Rd ← (X) None 1(1)(2)

LD Rd, X+ Load Indirect and Post-Increment Rd
X

←
←

(X)
X + 1

None 1(1)(2)

LD Rd, -X Load Indirect and Pre-Decrement X ← X - 1,
Rd ← (X)

←
←

X - 1
(X)

None 2(1)(2)

LD Rd, Y Load Indirect Rd ← (Y) ← (Y) None 1(1)(2)

LD Rd, Y+ Load Indirect and Post-Increment Rd
Y

←
←

(Y)
Y + 1

None 1(1)(2)

LD Rd, -Y Load Indirect and Pre-Decrement Y
Rd

←
←

Y - 1
(Y)

None 2(1)(2)

LDD Rd, Y+q Load Indirect with Displacement Rd ← (Y + q) None 2(1)(2)

LD Rd, Z Load Indirect Rd ← (Z) None 1(1)(2)

LD Rd, Z+ Load Indirect and Post-Increment Rd
Z

←
←

(Z),
Z+1

None 1(1)(2)

LD Rd, -Z Load Indirect and Pre-Decrement Z
Rd

←
←

Z - 1,
(Z)

None 2(1)(2)

LDD Rd, Z+q Load Indirect with Displacement Rd ← (Z + q) None 2(1)(2)

STS k, Rr Store Direct to Data Space (k) ← Rd None 2(1)

ST X, Rr Store Indirect (X) ← Rr None 1(1)

ST X+, Rr Store Indirect and Post-Increment (X)
X

←
←

Rr,
X + 1

None 1(1)

ST -X, Rr Store Indirect and Pre-Decrement X
(X)

←
←

X - 1,
Rr

None 2(1)

ST Y, Rr Store Indirect (Y) ← Rr None 1(1)

ST Y+, Rr Store Indirect and Post-Increment (Y)
Y

←
←

Rr,
Y + 1

None 1(1)

ST -Y, Rr Store Indirect and Pre-Decrement Y
(Y)

←
←

Y - 1,
Rr

None 2(1)

STD Y+q, Rr Store Indirect with Displacement (Y + q) ← Rr None 2(1)

ST Z, Rr Store Indirect (Z) ← Rr None 1(1)

ST Z+, Rr Store Indirect and Post-Increment (Z)
Z

←
←

Rr
Z + 1

None 1(1)

ST -Z, Rr Store Indirect and Pre-Decrement Z ← Z - 1 None 2(1)

STD Z+q,Rr Store Indirect with Displacement (Z + q) ← Rr None 2(1)

LPM Load Program Memory R0 ← (Z) None 3

LPM Rd, Z Load Program Memory Rd ← (Z) None 3

LPM Rd, Z+ Load Program Memory and Post-Increment Rd
Z

←
←

(Z),
Z + 1

None 3

ELPM Extended Load Program Memory R0 ← (RAMPZ:Z) None 3

ELPM Rd, Z Extended Load Program Memory Rd ← (RAMPZ:Z) None 3

Mnemonics Operands Description Operation Flags #Clocks
458
8331B–AVR–03/12

Atmel AVR XMEGA AU
ELPM Rd, Z+ Extended Load Program Memory and Post-
Increment

Rd
Z

←
←

(RAMPZ:Z),
Z + 1

None 3

SPM Store Program Memory (RAMPZ:Z) ← R1:R0 None -

SPM Z+ Store Program Memory and Post-Increment
by 2

(RAMPZ:Z)
Z

←
←

R1:R0,
Z + 2

None -

IN Rd, A In From I/O Location Rd ← I/O(A) None 1

OUT A, Rr Out To I/O Location I/O(A) ← Rr None 1

PUSH Rr Push Register on Stack STACK ← Rr None 1(1)

POP Rd Pop Register from Stack Rd ← STACK None 2(1)

XCH Z, Rd Exchange RAM location Temp
Rd
(Z)

←
←
←

Rd,
(Z),
Temp

None 2

LAS Z, Rd Load and Set RAM location Temp
Rd
(Z)

←
←
←

Rd,
(Z),
Temp v (Z)

None 2

LAC Z, Rd Load and Clear RAM location Temp
Rd
(Z)

←
←
←

Rd,
(Z),
($FFh – Rd) • (Z)

None 2

LAT Z, Rd Load and Toggle RAM location Temp
Rd
(Z)

←
←
←

Rd,
(Z),
Temp ⊕ (Z)

None 2

Bit and bit-test instructions

LSL Rd Logical Shift Left Rd(n+1)
Rd(0)

C

←
←
←

Rd(n),
0,
Rd(7)

Z,C,N,V,H 1

LSR Rd Logical Shift Right Rd(n)
Rd(7)

C

←
←
←

Rd(n+1),
0,
Rd(0)

Z,C,N,V 1

ROL Rd Rotate Left Through Carry Rd(0)
Rd(n+1)

C

←
←
←

C,
Rd(n),
Rd(7)

Z,C,N,V,H 1

ROR Rd Rotate Right Through Carry Rd(7)
Rd(n)

C

←
←
←

C,
Rd(n+1),
Rd(0)

Z,C,N,V 1

ASR Rd Arithmetic Shift Right Rd(n) ← Rd(n+1), n=0..6 Z,C,N,V 1

SWAP Rd Swap Nibbles Rd(3..0) ↔ Rd(7..4) None 1

BSET s Flag Set SREG(s) ← 1 SREG(s) 1

BCLR s Flag Clear SREG(s) ← 0 SREG(s) 1

SBI A, b Set Bit in I/O Register I/O(A, b) ← 1 None 1

CBI A, b Clear Bit in I/O Register I/O(A, b) ← 0 None 1

BST Rr, b Bit Store from Register to T T ← Rr(b) T 1

BLD Rd, b Bit load from T to Register Rd(b) ← T None 1

SEC Set Carry C ← 1 C 1

CLC Clear Carry C ← 0 C 1

SEN Set Negative Flag N ← 1 N 1

CLN Clear Negative Flag N ← 0 N 1

SEZ Set Zero Flag Z ← 1 Z 1

Mnemonics Operands Description Operation Flags #Clocks
459
8331B–AVR–03/12

Atmel AVR XMEGA AU
Notes: 1. Cycle times for data memory accesses assume internal memory accesses, and are not valid for accesses via the external RAM interface.

2. One extra cycle must be added when accessing Internal SRAM.

CLZ Clear Zero Flag Z ← 0 Z 1

SEI Global Interrupt Enable I ← 1 I 1

CLI Global Interrupt Disable I ← 0 I 1

SES Set Signed Test Flag S ← 1 S 1

CLS Clear Signed Test Flag S ← 0 S 1

SEV Set Two’s Complement Overflow V ← 1 V 1

CLV Clear Two’s Complement Overflow V ← 0 V 1

SET Set T in SREG T ← 1 T 1

CLT Clear T in SREG T ← 0 T 1

SEH Set Half Carry Flag in SREG H ← 1 H 1

CLH Clear Half Carry Flag in SREG H ← 0 H 1

MCU control instructions

BREAK Break (See specific descr. for BREAK) None 1

NOP No Operation None 1

SLEEP Sleep (see specific descr. for Sleep) None 1

WDR Watchdog Reset (see specific descr. for WDR) None 1

Mnemonics Operands Description Operation Flags #Clocks
460
8331B–AVR–03/12

Atmel AVR XMEGA AU
36. Appendix A: EBI Timing Diagrams

36.1 SRAM 3-Port ALE1 CS

Figure 36-1. Write, no ALE

Figure 36-2. Write, ALE

ClkPER2

A[7:0]/A[15:8]

D[7:0]

RE

WE

CS

D[7:0]

A[7:0]

ALE1

Write, no ALE

A[7:0]/A[15:8]

D[7:0] D[7:0]

A[7:0]

ALE1

Write, ALE

A[15:8]

ClkPER2

RE

WE

CS
461
8331B–AVR–03/12

Atmel AVR XMEGA AU
Figure 36-3. Read, no ALE

Figure 36-4. Read, ALE

A[7:0]/A[15:8]

D[7:0] D[7:0]

A[7:0]

ALE1

Read, no ALE

ClkPER2

RE

WE

CS

A[7:0]/A[15:8]

D[7:0]

A[7:0]

ALE1

Read, ALE

A[15:8]

D[7:0]

ClkPER2

RE

WE

CS
462
8331B–AVR–03/12

Atmel AVR XMEGA AU
36.2 SRAM 3-Port ALE12 CS

Figure 36-5. Write, no ALE

Figure 36-6. Write, ALE1

A[7:0]/A[15:8]/A[23:16]

D[7:0] D[7:0]

A[7:0]

ALE1

Write, no ALE

ALE2

ClkPER2

RE

WE

CS

D[7:0] D[7:0]

A[7:0]

ALE1

Write, ALE1

A[15:8]

ALE2

A[7:0]/A[15:8]/A[23:16]

ClkPER2

RE

WE

CS
463
8331B–AVR–03/12

Atmel AVR XMEGA AU
Figure 36-7. Write, ALE1 + ALE2

Figure 36-8. Read, no ALE

D[7:0] D[7:0]

A[7:0]

ALE1

Write, ALE1 + ALE2

A[15:8]

ALE2

A[7:0]/A[15:8]/A[23:16] A[23:16]

ClkPER2

RE

WE

CS

Read, no ALE

A[7:0]/A[15:8]/A[23:16]

D[7:0] D[7:0]

A[7:0]

ALE1

ALE2

ClkPER2

RE

WE

CS
464
8331B–AVR–03/12

Atmel AVR XMEGA AU
Figure 36-9. Read, ALE1

Figure 36-10. Read, ALE1 + ALE2

D[7:0]

A[7:0]

ALE1

Read, ALE1

A[15:8]

D[7:0]

ALE2

A[7:0]/A[15:8]/A[23:16]

ClkPER2

RE

WE

CS

D[7:0]

A[7:0]

ALE1

Read, ALE1 + ALE2

A[15:8]

D[7:0]

ALE2

A[7:0]/A[15:8]/A[23:16] A[23:16]

ClkPER2

RE

WE

CS
465
8331B–AVR–03/12

Atmel AVR XMEGA AU
36.3 SRAM 4-Port ALE2 CS

Figure 36-11. Write, no ALE

Figure 36-12. Write, ALE

A[7:0]/A[23:16]

D[7:0] D[7:0]

A[7:0]

ALE2

Write, no ALE

A[15:8] A[15:8]

ClkPER2

RE

WE

CS

A[7:0]/A[23:16]

D[7:0] D[7:0]

A[7:0]

ALE2

Write, ALE

A[23:16]

A[15:8] A[15:8]

ClkPER2

RE

WE

CS
466
8331B–AVR–03/12

Atmel AVR XMEGA AU
Figure 36-13. Read, no ALE

Figure 36-14. Read, ALE

A[7:0]/A[23:16]

D[7:0] D[7:0]

A[7:0]

ALE2

Read, no ALE

A[15:8] A[15:8]

ClkPER2

RE

WE

CS

A[7:0]/A[23:16]

D[7:0]

A[7:0]

ALE2

Read, ALE

A[23:16]

D[7:0]

A[15:8] A[15:8]

ClkPER2

RE

WE

CS
467
8331B–AVR–03/12

Atmel AVR XMEGA AU
36.4 SRAM 4- Port NOALE CS

Figure 36-15. Write

Figure 36-16. Read

A[7:0]

D[7:0] D[7:0]

A[7:0]

Write

A[15:8] A[15:8]

A[17:16] A[17:16]

ClkPER2

RE

WE

CS

A[7:0]

D[7:0] D[7:0]

A[7:0]

Read

A[15:8] A[15:8]

A[17:16] A[17:16]

ClkPER2

RE

WE

CS
468
8331B–AVR–03/12

Atmel AVR XMEGA AU
36.5 LPC 2- Port ALE12 CS

Figure 36-17. Write, ALE1

Figure 36-18. Write, ALE1 + ALE2

A[7:0]

ALE1

Write, ALE1

ALE2

D[7:0]/A[7:0]/A[15:8] D[7:0]

ClkPER2

RE

WE

CS

D[7:0]A[7:0]

ALE1

Write, ALE1 + ALE2

A[15:8]

ALE2

D[7:0]/A[7:0]/A[15:8]

ClkPER2

RE

WE

CS
469
8331B–AVR–03/12

Atmel AVR XMEGA AU
Figure 36-19. Read, ALE1

Figure 36-20. Read, ALE1 + ALE2

A[7:0]

ALE1

Read, ALE1

D[7:0]

ALE2

D[7:0]/A[7:0]/A[15:8]

ClkPER2

RE

WE

CS

A[7:0]

ALE1

Read, ALE1 + ALE2

A[15:8] D[7:0]

ALE2

D[7:0]/A[7:0]/A[15:8]

ClkPER2

RE

WE

CS
470
8331B–AVR–03/12

Atmel AVR XMEGA AU
36.6 LPC 3- Port ALE1 CS

Figure 36-21. Write

Figure 36-22. Read

A[7:0]

ALE1

Write

D[7:0]/A[7:0] D[7:0]

A[15:8] A[15:8]

ClkPER2

RE

WE

CS

A[7:0]

ALE1

Read

D[7:0]D[7:0]/A[7:0]

A[15:8] A[15:8]

ClkPER2

RE

WE

CS
471
8331B–AVR–03/12

Atmel AVR XMEGA AU
36.7 LPC 2- Port ALE1 CS

Figure 36-23. Write

Figure 36-24. Read

A[7:0]

ALE1

Write

D[7:0]/A[7:0] D[7:0]

ClkPER2

RE

WE

CS

A[7:0]

ALE1

Read

D[7:0]D[7:0]/A[7:0]

ClkPER2

RE

WE

CS
472
8331B–AVR–03/12

Atmel AVR XMEGA AU
36.8 SRAM 3- Port ALE1 no CS

Figure 36-25. Write, no ALE

Figure 36-26. Write, ALE

A[7:0]/A[15:8]

D[7:0] D[7:0]

A[7:0]

ALE1

Write, no ALE

A[19:16] A[19:16]

ClkPER2

RE

WE

A[7:0]/A[15:8]

D[7:0] D[7:0]

A[7:0]

ALE1

Write, ALE

A[15:8]

A[19:16] A[19:16]

ClkPER2

RE

WE
473
8331B–AVR–03/12

Atmel AVR XMEGA AU
Figure 36-27. Read, no ALE

Figure 36-28. Read, ALE

A[7:0]/A[15:8]

D[7:0] D[7:0]

A[7:0]

ALE1

Read, no ALE

A[19:16] A[19:16]

ClkPER2

RE

WE

A[7:0]/A[15:8]

D[7:0]

A[7:0]

ALE1

Read, ALE

A[15:8]

D[7:0]

A[19:16] A[19:16]

ClkPER2

RE

WE
474
8331B–AVR–03/12

Atmel AVR XMEGA AU
36.9 SRAM 4- Port NOALE no CS

Figure 36-29. Write

Figure 36-30. Read

A[7:0]

D[7:0] D[7:0]

A[7:0]

Write

A[15:8] A[15:8]

A[17:16] A[17:16]

A[21:18] A[21:18]

ClkPER2

RE

WE

A[7:0]

D[7:0] D[7:0]

A[7:0]

Read

A[15:8] A[15:8]

A[17:16] A[17:16]

A[21:18] A[21:18]

ClkPER2

RE

WE
475
8331B–AVR–03/12

Atmel AVR XMEGA AU
36.10 LPC 2- Port ALE12 no CS

Figure 36-31. Write, ALE1

Figure 36-32. Write, ALE1 + ALE2

A[7:0]

ALE1

Write, ALE1

ALE2

D[7:0]/A[7:0]/A[15:8] D[7:0]

ClkPER2

RE

WE

CS

D[7:0]A[7:0]

ALE1

Write, ALE1 + ALE2

A[15:8]

ALE2

D[7:0]/A[7:0]/A[15:8]

ClkPER2

RE

WE

CS
476
8331B–AVR–03/12

Atmel AVR XMEGA AU
Figure 36-33. Read, ALE1

Figure 36-34. Read, ALE1 + ALE2

A[7:0]

ALE1

Read, ALE1

D[7:0]

ALE2

D[7:0]/A[7:0]/A[15:8]

ClkPER2

RE

WE

CS

A[7:0]

ALE1

Read, ALE1 + ALE2

A[15:8] D[7:0]

ALE2

D[7:0]/A[7:0]/A[15:8]

ClkPER2

RE

WE

CS
477
8331B–AVR–03/12

Atmel AVR XMEGA AU
36.11 SDRAM init

Figure 36-35. SDRAM init

Mode Register

CLK

CKE

CAS

RAS

DQM

BA[1:0]

A[11:0]

D

0x400

P
recharge A

ll B
anks

A
uto R

efresh**

Load M
ode R

egister

N
O

P
*

* The number of NOPs is equal to RPDLY[2:0] (RPDLY = 1 is shown)

N
O

P
**

** The Auto Refresh and following NOPs are repeated 8 times
 The number of NOPs is equal to ROWCYCDLY[2:0] (ROWCYCDLY = 1 is shown)

ClkPER2

WE

CS
478
8331B–AVR–03/12

Atmel AVR XMEGA AU
36.12 SDRAM 8-bit Write

Figure 36-36. Single write

P
recharge A

ll B
anks

Bank Adr 0x0

D[7:0]

Row Adr Col Adr 0x400

A
ctive

W
rite

N
O

P
*

N
O

P
**

Single write

* The number of NOPs is equal to ROWCOLDLY[2:0] (ROWCOLDLY = 1 is shown)

** The number of NOPs is equal to WRDLY[1:0] + 1 (WRDLY = 0 is shown)

*** The number of NOPs is equal to RPDLY[1:0] (RPDLY = 1 is shown)

CLK

CKE

CAS

RAS

DQM

BA[1:0]

A[11:0]

D

ClkPER2

WE

CS
479
8331B–AVR–03/12

Atmel AVR XMEGA AU
Figure 36-37. Two consecutive writes

* The number of NOPs is equal to ROWCOLDLY[2:0] (ROWCOLDLY = 1 is shown)

** The number of NOPs is equal to WRDLY[1:0] + 1 (WRDLY = 0 is shown)

*** The number of NOPs is equal to RPDLY[1:0] (RPDLY = 1 is shown)

P
recharge A

ll B
anks

Bank Adr 0x0

D[7:0]

Row Adr Col Adr 0x400

A
ctive

W
rite

N
O

P
*

N
O

P
**

Two consecutive writes

Bank Adr 0x0

Row Adr Col Adr 0x400

D[7:0]

P
recharge A

ll B
anks

A
ctive

W
rite

N
O

P
*

N
O

P
**

CLK

CKE

CAS

RAS

DQM

BA[1:0]

A[11:0]

D

ClkPER2

WE

CS
480
8331B–AVR–03/12

Atmel AVR XMEGA AU
Figure 36-38. Burst access within a single page

* The number of NOPs is equal to ROWCOLDLY[2:0] (ROWCOLDLY = 1 is shown)

** The number of NOPs is equal to WRDLY[1:0] + 1 (WRDLY = 0 is shown)

*** The number of NOPs is equal to RPDLY[1:0] (RPDLY = 1 is shown)

Bank Adr

D[7:0]

Row Adr Col Adr

A
ctive

W
rite

N
O

P
*

N
O

P
**

Burst access within a single page

0x0

Col Adr 0x400

D[7:0]

P
recharge A

ll B
anks

W
rite

Col Adr

D[7:0]

W
rite

CLK

CKE

CAS

RAS

DQM

BA[1:0]

A[11:0]

D

ClkPER2

WE

CS
481
8331B–AVR–03/12

Atmel AVR XMEGA AU
Figure 36-39. Burst access crossing page boundary

* The number of NOPs is equal to ROWCOLDLY[2:0] (ROWCOLDLY = 1 is shown)

** The number of NOPs is equal to WRDLY[1:0] + 1 (WRDLY = 0 is shown)

*** The number of NOPs is equal to RPDLY[1:0] (RPDLY = 1 is shown)

Bank Adr

D[7:0]

Row Adr Col Adr

A
ctive

W
rite

N
O

P
*

N
O

P
**

Burst access crossing page boundary

0x0

0x400

P
recharge A

ll B
anks

W
rite

Col Adr

D[7:0]

W
rite

Bank Adr 0x0

Row Adr Col Adr 0x400

D[7:0]

P
recharge A

ll B
anks

A
ctive

N
O

P
*

N
O

P

CLK

CKE

CAS

RAS

DQM

BA[1:0]

A[11:0]

D

ClkPER2

WE

CS
482
8331B–AVR–03/12

Atmel AVR XMEGA AU
36.13 SDRAM 8-bit read

Figure 36-40. Single read

P
recharge A

ll B
anks

Bank Adr 0x0

D[7:0]

Row Adr Col Adr 0x400

A
ctive

R
ead

N
O

P
*

N
O

P

Single read

D
ata sam

pled

N
O

P
**

C
lock

suspend***

** NOP is only inserted for CAS3

**** The number of NOPs is equal to WRDLY[1:0] + 1 (WRDLY = 0 is shown)

***** The number of NOPs is equal to RPDLY[1:0] (RPDLY = 1 is shown)

* The number of NOPs is equal to ROWCOLDLY[2:0] (ROWCOLDLY = 1 is shown)

*** Clock suspended for 1 cycle when EBI is running at 1x and 1 or 2 cycles when EBI
is running at 2x, to enable sampling of data on the positive edge of the 1x clock.

CLK

CKE

CAS

RAS

DQM

BA[1:0]

A[11:0]

D

ClkPER2

WE

CS
483
8331B–AVR–03/12

Atmel AVR XMEGA AU
Figure 36-41. Two consecutive reads

** NOP is only inserted for CAS3

**** The number of NOPs is equal to WRDLY[1:0] + 1 (WRDLY = 0 is shown)

***** The number of NOPs is equal to RPDLY[1:0] (RPDLY = 1 is shown)

* The number of NOPs is equal to ROWCOLDLY[2:0] (ROWCOLDLY = 1 is shown)

*** Clock suspended for 1 cycle when EBI is running at 1x and 1 or 2 cycles when EBI
is running at 2x, to enable sampling of data on the positive edge of the 1x clock.

Bank Adr 0x0

Row Adr Col Adr 0x400

Two consecutive reads

Bank Adr 0x0

Row Adr Col Adr 0x400

D[7:0] D[7:0]

P
recharge A

ll Banks

A
ctive

R
ead

N
O

P
*

N
O

P

D
ata sam

pled

N
O

P
**

C
lock

suspend***

P
recharge A

ll Banks

A
ctive

R
ead

N
O

P
*

N
O

P

D
ata sam

pled

N
O

P
**

C
lock

suspend***

CLK

CKE

CAS

RAS

DQM

BA[1:0]

A[11:0]

D

ClkPER2

WE

CS
484
8331B–AVR–03/12

Atmel AVR XMEGA AU
Figure 36-42. Burst access within a single page

** NOP is only inserted for CAS3

**** The number of NOPs is equal to WRDLY[1:0] + 1 (WRDLY = 0 is shown)

***** The number of NOPs is equal to RPDLY[1:0] (RPDLY = 1 is shown)

* The number of NOPs is equal to ROWCOLDLY[2:0] (ROWCOLDLY = 1 is shown)

*** Clock suspended for 1 cycle when EBI is running at 1x and 1 or 2 cycles when EBI
is running at 2x, to enable sampling of data on the positive edge of the 1x clock.

Bank Adr

Row Adr Col Adr

Burst access within a single page

0x0

Col Adr 0x400Col Adr

D[7:0] D[7:0]D[7:0]

P
recharge A

ll Banks

A
ctive

R
ead

N
O

P
*

N
O

P

D
ata sam

pled

N
O

P
**

C
lock

suspend***

R
ead

D
ata sam

pled

N
O

P
**

C
lock

suspend***

R
ead

D
ata sam

pled

N
O

P
**

C
lock

suspend***

CLK

CKE

CAS

RAS

DQM

BA[1:0]

A[11:0]

D

ClkPER2

WE

CS
485
8331B–AVR–03/12

Atmel AVR XMEGA AU
Figure 36-43. Burst access crossing page boundary

** NOP is only inserted for CAS3

**** The number of NOPs is equal to WRDLY[1:0] + 1 (WRDLY = 0 is shown)

***** The number of NOPs is equal to RPDLY[1:0] (RPDLY = 1 is shown)

* The number of NOPs is equal to ROWCOLDLY[2:0] (ROWCOLDLY = 1 is shown)

*** Clock suspended for 1 cycle when EBI is running at 1x and 1 or 2 cycles when EBI
is running at 2x, to enable sampling of data on the positive edge of the 1x clock.

Burst access crossing page boundary

Bank Adr

Row Adr Col Adr

0x0

Col Adr 0x400 Col Adr

D[7:0] D[7:0]D[7:0]

P
recharge A

ll Banks

A
ctive

R
ead

N
O

P*

N
O

P****

D
ata sam

pled

N
O

P**

C
lock

suspend***

R
ead

D
ata sam

pled

N
O

P**

C
lock

suspend***

R
ead

D
ata sam

pled

N
O

P**

C
lock

suspend***

0x400

0x0Bank Adr

P
recharge A

ll Banks

N
O

P*****

A
ctive

N
O

P*

CLK

CKE

CAS

RAS

DQM

BA[1:0]

A[11:0]

D

ClkPER2

WE

CS
486
8331B–AVR–03/12

Atmel AVR XMEGA AU
36.14 SDRAM 4-bit write

Figure 36-44. Single write

P
recharge A

ll B
anks

Bank Adr 0x0

D[3:0]

Row Adr Col Adr 0x400

A
ctive

W
rite

N
O

P
*

N
O

P
**

Single write

D[7:4]

* The number of NOPs is equal to ROWCOLDLY[2:0] (ROWCOLDLY = 1 is shown)

** The number of NOPs is equal to WRDLY[1:0] + 1 (WRDLY = 0 is shown)

*** The number of NOPs is equal to RPDLY[1:0] (RPDLY = 1 is shown)

CLK

CKE

CAS

RAS

DQM

BA[1:0]

A[11:0]

D

ClkPER2

WE

CS
487
8331B–AVR–03/12

Atmel AVR XMEGA AU
Figure 36-45. Two consecutive writes

* The number of NOPs is equal to ROWCOLDLY[2:0] (ROWCOLDLY = 1 is shown)

** The number of NOPs is equal to WRDLY[1:0] + 1 (WRDLY = 0 is shown)

*** The number of NOPs is equal to RPDLY[1:0] (RPDLY = 1 is shown)

P
recharge A

ll B
anks

Bank Adr 0x0

Row Adr Col Adr 0x400

A
ctive

W
rite

N
O

P
*

N
O

P
**

Two consecutive writes

Bank Adr 0x0

Row Adr Col Adr 0x400

P
recharge A

ll B
anks

A
ctive

W
rite

N
O

P
*

N
O

P
**

D[3:0] D[7:4] D[3:0] D[7:4]

CLK

CKE

CAS

RAS

DQM

BA[1:0]

A[11:0]

D

ClkPER2

WE

CS
488
8331B–AVR–03/12

Atmel AVR XMEGA AU
Figure 36-46. Burst access within a single page

* The number of NOPs is equal to ROWCOLDLY[2:0] (ROWCOLDLY = 1 is shown)

** The number of NOPs is equal to WRDLY[1:0] + 1 (WRDLY = 0 is shown)

*** The number of NOPs is equal to RPDLY[1:0] (RPDLY = 1 is shown)

Bank Adr

Row Adr Col Adr

A
ctive

W
rite

N
O

P*

N
O

P**

Burst access within a single page

0x0

0x400

Precharge All B
anks

W
rite

Col Adr
W

rite
D[3:0] D[7:4] D[3:0] D[7:4] D[3:0] D[7:4]

Col Adr

CLK

CKE

CAS

RAS

DQM

BA[1:0]

A[11:0]

D

ClkPER2

WE

CS
489
8331B–AVR–03/12

Atmel AVR XMEGA AU
Figure 36-47. Burst access crossing page boundary

* The number of NOPs is equal to ROWCOLDLY[2:0] (ROWCOLDLY = 1 is shown)

** The number of NOPs is equal to WRDLY[1:0] + 1 (WRDLY = 0 is shown)

*** The number of NOPs is equal to RPDLY[1:0] (RPDLY = 1 is shown)

Bank Adr

Row Adr Col Adr

A
ctive

W
rite

N
O

P
*

N
O

P
**

Burst access crossing page boundary

0x0

0x400

P
recharge A

ll Banks

W
rite

Col Adr

W
rite

Bank Adr 0x0

Row Adr Col Adr 0x400

P
recharge A

ll Banks

A
ctive

N
O

P
*

N
O

P

D[3:0] D[7:4] D[3:0] D[7:4] D[3:0] D[7:4]

CLK

CKE

CAS

RAS

DQM

BA[1:0]

A[11:0]

D

ClkPER2

WE

CS
490
8331B–AVR–03/12

Atmel AVR XMEGA AU
36.15 SDRAM 4-bit read

Figure 36-48. Single read

P
recharge A

ll B
anks

Bank Adr 0x0

D[3:0]

Row Adr Col Adr 0x400

A
ctive

R
ead

N
O

P
*

N
O

P

Single read

D
ata sam

pled

N
O

P
**

C
lock

suspend***

D[7:4]

D
ata sam

pled

C
lock suspend

** NOP is only inserted for CAS3

**** The number of NOPs is equal to WRDLY[1:0] + 1 (WRDLY = 0 is shown)

***** The number of NOPs is equal to RPDLY[1:0] (RPDLY = 1 is shown)

* The number of NOPs is equal to ROWCOLDLY[2:0] (ROWCOLDLY = 1 is shown)

*** Clock suspended for 1 cycle when EBI is running at 1x and 1 or 2 cycles when EBI
is running at 2x, to enable sampling of data on the positive edge of the 1x clock.

CLK

CKE

CAS

RAS

DQM

BA[1:0]

A[11:0]

D

ClkPER2

WE

CS
491
8331B–AVR–03/12

Atmel AVR XMEGA AU
Figure 36-49. Two consecutive reads

** NOP is only inserted for CAS3

**** The number of NOPs is equal to WRDLY[1:0] + 1 (WRDLY = 0 is shown)

***** The number of NOPs is equal to RPDLY[1:0] (RPDLY = 1 is shown)

* The number of NOPs is equal to ROWCOLDLY[2:0] (ROWCOLDLY = 1 is shown)

*** Clock suspended for 1 cycle when EBI is running at 1x and 1 or 2 cycles when EBI
is running at 2x, to enable sampling of data on the positive edge of the 1x clock.

Bank Adr 0x0

Row Adr Col Adr 0x400

Two consecutive reads

Bank Adr 0x0

Row Adr Col Adr 0x400

P
recharge A

ll B
anks

A
ctive

R
ead

N
O

P*

N
O

P****

D
ata sam

pled

N
O

P**

C
lock

suspend***

P
recharge A

ll B
anks

A
ctive

R
ead

N
O

P*

N
O

P****

D
ata sam

pled

N
O

P**

C
lock

suspend***

D[3:0] D[7:4]

D
ata sam

pled

C
lock suspend

D[3:0] D[7:4]

D
ata sam

pled

C
lock suspend

CLK

CKE

CAS

RAS

DQM

BA[1:0]

A[11:0]

D

ClkPER2

WE

CS
492
8331B–AVR–03/12

Atmel AVR XMEGA AU
Figure 36-50. Burst access within a single page

Figure 36-51. Burst access crossing page boundary

** NOP is only inserted for CAS3

**** The number of NOPs is equal to WRDLY[1:0] + 1 (WRDLY = 0 is shown)

***** The number of NOPs is equal to RPDLY[1:0] (RPDLY = 1 is shown)

* The number of NOPs is equal to ROWCOLDLY[2:0] (ROWCOLDLY = 1 is shown)

*** Clock suspended for 1 cycle when EBI is running at 1x and 1 or 2 cycles when EBI
is running at 2x, to enable sampling of data on the positive edge of the 1x clock.

Bank Adr

Row Adr Col Adr

Burst access within a single page

0x0

Col Adr 0x400Col Adr

P
recharge All Banks

A
ctive

R
ead

N
O

P
*

N
O

P

D
ata sam

pled

N
O

P
**

C
lock

suspend***

R
ead

D
ata sam

pled

N
O

P
**

C
lock

suspend***

R
ead

D
ata sam

pled

N
O

P
**

C
lock

suspend***

D[3:0] D[7:4]

D
ata sam

pled

C
lock suspend

D
ata sam

pled

C
lock suspend

D[3:0] D[7:4] D[3:0] D[7:4]

D
ata sam

pled

C
lock suspend

CLK

CKE

CAS

RAS

DQM

BA[1:0]

A[11:0]

D

ClkPER2

WE

CS

** NOP is only inserted for CAS3

**** The number of NOPs is equal to WRDLY[1:0] + 1 (WRDLY = 0 is shown)

***** The number of NOPs is equal to RPDLY[1:0] (RPDLY = 1 is shown)

* The number of NOPs is equal to ROWCOLDLY[2:0] (ROWCOLDLY = 1 is shown)

*** Clock suspended for 1 cycle when EBI is running at 1x and 1 or 2 cycles when EBI
is running at 2x, to enable sampling of data on the positive edge of the 1x clock.

Burst access crossing page boundary

Bank Adr

Row Adr Col Adr

0x0

Col Adr 0x400 Col Adr

P
recharge All Banks

Active

R
ead

N
O

P*

N
O

P****

D
ata sam

pled

N
O

P**

C
lock

suspend***

R
ead

D
ata sam

pled

N
O

P**

C
lock

suspend***

R
ead

D
ata sam

pled

N
O

P**

C
lock

suspend***

0x400

0x0Bank Adr

P
recharge All Banks

N
O

P*****

Active

N
O

P*

D[3:0] D[7:4]

D
ata sam

pled

C
lock suspend

D[3:0] D[7:4] D[3:0] D[7:4]

D
ata sam

pled

C
lock suspend

D
ata sam

pled

C
lock suspend

CLK

CKE

CAS

RAS

DQM

BA[1:0]

A[11:0]

D

ClkPER2

WE

CS
493
8331B–AVR–03/12

Atmel AVR XMEGA AU
36.16 SRAM refresh

Figure 36-52. Autorefresh when idle

A
uto R

efresh

Autorefresh when idle

* The number of NOPs is equal to RPDLY[1:0] (RPDLY = 1 is shown)

** The number of NOPs is equal to ESRDLY[2:0] (ESRDLY = 1 is shown)

CLK

CKE

CAS

RAS

DQM

BA[1:0]

A[11:0]

D

ClkPER2

WE

CS
494
8331B–AVR–03/12

Atmel AVR XMEGA AU
Figure 36-53. Autorefresh between two accesses

* The number of NOPs is equal to RPDLY[1:0] (RPDLY = 1 is shown)

** The number of NOPs is equal to ESRDLY[2:0] (ESRDLY = 1 is shown)

A
uto R

efresh

Autorefresh between two acesses

P
recharge A

ll

A
ctive

N
O

P
*

CLK

CKE

CAS

RAS

DQM

BA[1:0]

A[11:0]

D

ClkPER2

WE

CS
495
8331B–AVR–03/12

Atmel AVR XMEGA AU
Figure 36-54. Enter Self Refresh

* The number of NOPs is equal to RPDLY[1:0] (RPDLY = 1 is shown)

** The number of NOPs is equal to ESRDLY[2:0] (ESRDLY = 1 is shown)

Enter Self R
efresh

Enter Self Refresh

CLK

CKE

CAS

RAS

DQM

BA[1:0]

A[11:0]

D

ClkPER2

WE

CS
496
8331B–AVR–03/12

Atmel AVR XMEGA AU
Figure 36-55. Exit Self Refresh

* The number of NOPs is equal to RPDLY[1:0] (RPDLY = 1 is shown)

** The number of NOPs is equal to ESRDLY[2:0] (ESRDLY = 1 is shown)

Exit Self Refresh

N
O

P
**

CLK

CKE

CAS

RAS

DQM

BA[1:0]

A[11:0]

D

ClkPER2

WE

CS
497
8331B–AVR–03/12

Atmel AVR XMEGA AU
37. Datasheet Revision History
Please note that the referring page numbers in this section are referring to this document. The
referring revision in this section are referring to the document revision.

37.1 8331B – 03/12

1. Added Table 2-1 ”XMEGA AU feature summary overview.” on page 5.

2. Updated ”LOCKBITS – Lock Bit register” on page 35. Description of Bit[1:0] updated and added
a table note.

3. Title of Table 4-12 on page 37 changed to “Lock bit protection mode.”

4. Updated ”CTRLA – Control register A” on page 61. Bits CHEN and CHRST replaced
respectively by ENABLE and RESET. Updated the ”Register Summary – DMA Channel” on
page 70.

5. Updated ”TRIGSRC – Trigger Source” on page 65. The description Bit[7:0] updated.

6. Updated Figure 6-1 on page 72, the “Event system overview and connected peripherals.”

7. Updated Figure 7-1 on page 84, the “The clock system, clock sources, and clock distribution.”

8. Updated the formula of COMP register on the page 90.

9. Added a table note on the Table 7-7 on page 98.

10. Updated Table 9-2 on page 116, the “Programmable BODLEVEL setting.”

11. Table note added to the Table 11-1 on page 130.

12. Table note added to the Table 11-2 on page 132.

13. Added Figure 12-1, the ”Interrupt controller overview” on page 135.

14. Updated Figure 13-1 on page 144, the “General I/O pin functionality.”

15. Updated ”Port Interrupt” on page 149.

16. Updated Table 13-3 on page 150. “Both edge” replaced by “Any edge”.

17. Updated ”Port Event” on page 150.

18. Updated Table 13-10 on page 161, and Table 13-11 on page 162.

19. Updated ”Event Action Controlled Operation” on page 173.

20. Updated Figure 14-10 on page 175. CH7MUX changed to CHnMUX.

21. Updated Table 15-3 on page 200. CMD changed to BYTEM[1:0].

22. Updated ”Clock Domains” on page 220.

23. Figure 19-1 on page 227replaced by a new one “32-bit real-time counter overview.”

24. Updated ”USB – Universal Serial Bus Interface” on page 235 with new Figure 20-3 on page
237, new Figure 20-4 on page 238, new Figure 20-5 on page 240, and new Figure 20-12 on
page 246.

25. Title of Figure 20-3 on page 237 changed to “SETUP transaction.”

26. Title of Figure 20-4 on page 238 changed to “OUT transaction.”

27. Title of Figure 20-5 on page 240 changed to “IN transaction.”

28. Updated ”Receiving Address Packets” on page 272 .

29. Updated both formula of ”BAUD – Baud Rate register” on page 278.
498
8331B–AVR–03/12

Atmel AVR XMEGA AU
37.2 8331A – 07/11

30. Updated ”DATA – Data register” on page 284. Added the description of ADDR[7:1] and
ADDR[0].

31. Updated the formula in ”Fractional Baud Rate Generation” on page 304.

32. Updated Figure 23-9 on page 305, the “Fractional baud rate example.”

33. Added Table 23-5 on page 306, the “USART Baud rate.”

34. Updated Figure 24-1 on page 316, the “IRCOM connection to USARTs and associated port
pins.” RXDnx and TXDnxc changed to RXDxn and TXDxn respectively.

35. Updated Table 24-1 on page 319. 1xxx and CHx changed to 1nnn and CHn respectively.

36. Updated ”SRAM Configuration” on page 337.

37. Updated ”Address Latches” on page 339

38. Updated Table 27-4 on page 344, Table 27-5 on page 344, Table 27-6 on page 345, and Table
27-7 on page 345.

39. Replaced Figure 28-1 on page 357 by an updated one.

40. Updated ”ADC Input Model” on page 367.

41. Updated ”Synchronous Sampling” on page 369.

42. Updated ”SCAN – Channel Scan register” on page 383. Bit[3:0] description updated.

43. Added Table 28-15 on page 379.

44. Updated the formula of output voltage in ”Output and output channels” on page 387.

45. Updated ”Calibration” on page 388. Formula updated and new equations added.

46. Updated ”Peripheral Module Address Map” on page 453. Added USB addess.

47. Updated ”Appendix A: EBI Timing Diagrams” on page 461

48. Editing update.

1. Initial revision
499
8331B–AVR–03/12

Atmel AVR XMEGA AU
Table Of Contents

1 About the Manual ... 2

1.1 Reading the Manual ..2

1.2 Resources ...2

1.3 Recommended Reading ..2

2 Overview ... 3

3 AVR CPU .. 7

3.1 Features ..7

3.2 Overview ..7

3.3 Architectural Overview ...7

3.4 ALU - Arithmetic Logic Unit ...8

3.5 Program Flow ..9

3.6 Instruction Execution Timing ...9

3.7 Status Register ..10

3.8 Stack and Stack Pointer ..10

3.9 Register File ..11

3.10 RAMP and Extended Indirect Registers ..12

3.11 Accessing 16-bit Registers ..13

3.12 Configuration Change Protection ..13

3.13 Fuse Lock ..14

3.14 Register Descriptions ..15

3.15 Register Summary ...19

4 Memories .. 20

4.1 Features ..20

4.2 Overview ..20

4.3 Flash Program Memory ...21

4.4 Fuses and Lockbits ..22

4.5 Data Memory ...23

4.6 Internal SRAM ...23

4.7 EEPROM ...23

4.8 I/O Memory ..24

4.9 External Memory ...24

4.10 Data Memory and Bus Arbitration ...24

4.11 Memory Timing ..25
i
8331B–AVR–03/12

Atmel AVR XMEGA AU
4.12 Device ID and Revision ...25

4.13 JTAG Disable ..25

4.14 I/O Memory Protection ...25

4.15 Register Description – NVM Controller ..26

4.16 Register Descriptions – Fuses and Lock bits ..31

4.17 Register Description – Production Signature Row ..37

4.18 Register Description – General Purpose I/O Memory46

4.19 Register Description – External Memory ...46

4.20 Register Descriptions – MCU Control ..47

4.21 Register Summary - NVM Controller ...51

4.22 Register Summary - Fuses and Lockits ...51

4.23 Register Summary - Production Signature Row ..52

4.24 Register Summary – General Purpose I/O Registers53

4.25 Register Summary – MCU Control ..53

4.26 Interrupt Vector Summary – NVM Controller ...53

5 DMAC - Direct Memory Access Controller .. 54

5.1 Features ..54

5.2 Overview ..54

5.3 DMA Transaction ...55

5.4 Transfer Triggers ...56

5.5 Addressing ...56

5.6 Priority Between Channels ..56

5.7 Double Buffering ..57

5.8 Transfer Buffers ...57

5.9 Error detection ...57

5.10 Software Reset ..57

5.11 Protection ..57

5.12 Interrupts ...58

5.13 Register Description – DMA Controller ..59

5.14 Register Description – DMA Channel ..61

5.15 Register Summary – DMA Controller ..70

5.16 Register Summary – DMA Channel ..70

5.17 DMA Interrupt Vector Summary ..70

6 Event System ... 71

6.1 Features ..71
ii
8331B–AVR–03/12

Atmel AVR XMEGA AU
6.2 Overview ..71

6.3 Events ..72

6.4 Event Routing Network ..74

6.5 Event Timing ..76

6.6 Filtering ..76

6.7 Quadrature Decoder ..76

6.8 Register Description ..78

6.9 Register Summary ...82

7 System Clock and Clock Options ... 83

7.1 Features ..83

7.2 Overview ..83

7.3 Clock Distribution ...85

7.4 Clock Sources ...85

7.5 System Clock Selection and Prescalers ..87

7.6 PLL with 1x-31x Multiplication Factor ..88

7.7 DFLL 2MHz and DFLL 32MHz ..89

7.8 PLL and External Clock Source Failure Monitor ..90

7.9 Register Description – Clock ...92

7.10 Register Description – Oscillator ...96

7.11 Register Description – DFLL32M/DFLL2M ..101

7.12 Register Summary - Clock ...104

7.13 Register Summary - Oscillator ...104

7.14 Register Summary - DFLL32M/DFLL2M ...104

7.15 Oscillator Failure Interrupt Vector Summary ...104

8 Power Management and Sleep Modes ... 105

8.1 Features ..105

8.2 Overview ..105

8.3 Sleep Modes ..105

8.4 Power Reduction Registers ...107

8.5 Minimizing Power Consumption ..107

8.6 Register Description – Sleep ...109

8.7 Register Description – Power Reduction ...109

8.8 Register Summary – Sleep ..112

8.9 Register Summary – Power Reduction ...112

9 Reset System ... 113
iii
8331B–AVR–03/12

Atmel AVR XMEGA AU
9.1 Features ..113

9.2 Overview ..113

9.3 Reset Sequence ..114

9.4 Reset Sources ...115

9.5 Register Description ..119

9.6 Register Summary ...120

10 Battery Backup System ... 121

10.1 Features ..121

10.2 Overview ..121

10.3 Battery Backup System ...122

10.4 Configuration ...123

10.5 Operation ...123

10.6 Register Description ..125

10.7 Register Summary ...127

11 WDT – Watchdog Timer ... 128

11.1 Features ..128

11.2 Overview ..128

11.3 Normal Mode Operation ..128

11.4 Window Mode Operation ...129

11.5 Watchdog Timer Clock ..129

11.6 Configuration Protection and Lock ..130

11.7 Registers Description ..130

11.8 Register Summary ...133

12 Interrupts and Programmable Multilevel Interrupt Controller 134

12.1 Features ..134

12.2 Overview ..134

12.3 Operation ...134

12.4 Interrupts ...135

12.5 Interrupt level ...138

12.6 Interrupt priority ...138

12.7 Interrupt vector locations ...140

12.8 Register Description ..141

12.9 Register Summary ...142

13 I/O Ports .. 143

13.1 Features ..143
iv
8331B–AVR–03/12

Atmel AVR XMEGA AU
13.2 Overview ..143

13.3 I/O Pin Use and Configuration ...144

13.4 Reading the Pin Value ...147

13.5 Input Sense Configuration ...148

13.6 Port Interrupt ..149

13.7 Port Event ..150

13.8 Alternate Port Functions ..150

13.9 Slew Rate Control ..151

13.10 Clock and Event Output ...151

13.11 Multi-pin configuration ...152

13.12 Virtual Ports ...152

13.13 Register Descriptions – Ports ..153

13.14 Register Descriptions – Port Configuration ...159

13.15 Register Descriptions – Virtual Port ...164

13.16 Register Summary – Ports ..166

13.17 Register Summary – Port Configuration ..166

13.18 Register Summary – Virtual Ports ...166

13.19 Interrupt Vector Summary – Ports ...167

14 TC0/1 – 16-bit Timer/Counter Type 0 and 1 168

14.1 Features ..168

14.2 Overview ..168

14.3 Block Diagram ...170

14.4 Clock and Event Sources ..171

14.5 Double Buffering ..171

14.6 Counter Operation ...172

14.7 Capture Channel ...175

14.8 Compare Channel ...177

14.9 Interrupts and events ...181

14.10 DMA Support ...181

14.11 Timer/Counter Commands ..181

14.12 Register Description ..182

14.13 Register Summary ...192

14.14 Interrupt Vector Summary ...192

15 TC2 – 16-bit Timer/Counter Type 2 ... 193

15.1 Features ..193
v
8331B–AVR–03/12

Atmel AVR XMEGA AU
15.2 Overview ..193

15.3 Block Diagram ...194

15.4 Clock Sources ...194

15.5 Counter Operation ...195

15.6 Compare Channel ...196

15.7 Interrupts and Events ..197

15.8 DMA Support ...198

15.9 Timer/Counter Commands ..198

15.10 Register Description ..199

15.11 Register Summary ...205

15.12 Interrupt Vector Summary ...205

16 AWeX – Advanced Waveform Extension ... 206

16.1 Features ..206

16.2 Overview ..206

16.3 Port Override ...207

16.4 Dead-time Insertion ...208

16.5 Pattern Generation ..209

16.6 Fault Protection ...210

16.7 Register Description ..212

16.8 Register Summary ...216

17 Hi-Res – High-Resolution Extension .. 217

17.1 Features ..217

17.2 Overview ..217

17.3 Register Description ..218

17.4 Register Summary ...218

18 RTC – Real-Time Counter .. 219

18.1 Features ..219

18.2 Overview ..219

18.3 Register Descriptions ..221

18.4 Register Summary ...226

18.5 Interrupt Vector Summary ...226

19 RTC32 – 32-bit Real-Time Counter ... 227

19.1 Features ..227

19.2 Overview ..227

19.3 Register Descriptions ..229
vi
8331B–AVR–03/12

Atmel AVR XMEGA AU
19.4 Register Summary ...234

19.5 Interrupt Vector Summary ...234

20 USB – Universal Serial Bus Interface ... 235

20.1 Features ..235

20.2 Overview ..235

20.3 Operation ...237

20.4 SRAM Memory Mapping ...240

20.5 Clock Generation ...241

20.6 Ping-pong Operation ...242

20.7 Multipacket Transfers ..243

20.8 Auto Zero Length Packet ...244

20.9 Transaction Complete FIFO ..244

20.10 Interrupts and Events ..245

20.11 VBUS Detection ...247

20.12 On-chip Debug ..247

20.13 Register Description – USB ...248

20.14 Register Description – USB Endpoint ..255

20.15 Register Description – Frame ..260

20.16 Register Summary – USB Module ...261

20.17 Register Summary – USB Endpoint ..261

20.18 Register Summary – Frame ..261

20.19 USB Interrupt Vector Summary ...261

21 TWI – Two-Wire Interface .. 262

21.1 Features ..262

21.2 Overview ..262

21.3 General TWI Bus Concepts ...263

21.4 TWI Bus State Logic ..268

21.5 TWI Master Operation ...269

21.6 TWI Slave Operation ...271

21.7 Enabling External Driver Interface ...273

21.8 Register Description – TWI ..274

21.9 Register Description – TWI Master ..275

21.10 Register Description – TWI Slave ..280

21.11 Register Summary - TWI ...286

21.12 Register Summary - TWI Master ...286
vii
8331B–AVR–03/12

Atmel AVR XMEGA AU
21.13 Register Summary - TWI Slave ...286

21.14 Interrupt Vector Summary ...286

22 SPI – Serial Peripheral Interface ... 287

22.1 Features ..287

22.2 Overview ..287

22.3 Master Mode ..288

22.4 Slave Mode ..288

22.5 Data Modes ...289

22.6 DMA Support ...289

22.7 Register Description ..290

22.8 Register Summary ...292

22.9 Interrupt vector Summary ..292

23 USART ... 293

23.1 Features ..293

23.2 Overview ..293

23.3 Clock Generation ...295

23.4 Frame Formats ..298

23.5 USART Initialization ...299

23.6 Data Transmission - The USART Transmitter ...299

23.7 Data Reception - The USART Receiver ..300

23.8 Asynchronous Data Reception ..301

23.9 Fractional Baud Rate Generation ..304

23.10 USART in Master SPI Mode ..307

23.11 USART SPI vs. SPI ...307

23.12 Multiprocessor Communication Mode ...307

23.13 IRCOM Mode of Operation ..308

23.14 DMA Support ...308

23.15 Register Description ..309

23.16 Register Summary ...315

23.17 Interrupt Vector Summary ...315

24 IRCOM - IR Communication Module .. 316

24.1 Features ..316

24.2 Overview ..316

24.3 Registers Description ..318

24.4 Register Summary ...319
viii
8331B–AVR–03/12

Atmel AVR XMEGA AU
25 AES and DES Crypto Engines .. 320

25.1 Features ..320

25.2 Overview ..320

25.3 DES Instruction ..320

25.4 AES Crypto Module ...321

25.5 Register Description – AES ...324

25.6 Register Summary - AES ..327

25.7 Interrupt vector Summary - AES ..327

26 CRC – Cyclic Redundancy Check Generator 328

26.1 Features ..328

26.2 Overview ..328

26.3 Operation ...329

26.4 CRC on Flash memory ..329

26.5 CRC on DMA Data ..330

26.6 CRC using the I/O Interface ..330

26.7 Register Description ..331

26.8 Register Sumary ...334

27 EBI – External Bus Interface ... 335

27.1 Features ..335

27.2 Overview ..335

27.3 Chip Select ..335

27.4 EBI Clock ...337

27.5 SRAM Configuration ..337

27.6 SRAM LPC Configuration ..339

27.7 SDRAM Configuration ...340

27.8 Combined SRAM & SDRAM Configuration ...342

27.9 I/O Pin and Pin-out Configuration ..343

27.10 Register Description – EBI ..346

27.11 Register Description – EBI Chip Select ...351

27.12 Register Summary - EBI ..355

27.13 Register Summary - EBI Chip Select ..355

28 ADC – Analog-to-Digital Converter .. 356

28.1 Features ..356

28.2 Overview ..356

28.3 Input Sources ..357
ix
8331B–AVR–03/12

Atmel AVR XMEGA AU
28.4 ADC Channels ...360

28.5 Voltage Reference Selection ...361

28.6 Conversion Result ...361

28.7 Compare Function ...363

28.8 Starting a Conversion ..363

28.9 ADC Clock and Conversion Timing ...363

28.10 ADC Input Model ...367

28.11 DMA Transfer ..368

28.12 Interrupts and Events ..368

28.13 Calibration ...368

28.14 Channel Priority ...368

28.15 Synchronous Sampling ..369

28.16 Register Description – ADC ...370

28.17 Register Description - ADC Channel ...377

28.18 Register Summary – ADC ...384

28.19 Register Summary – ADC Channel ...384

28.20 Interrupt vector Summary ..385

29 DAC – Digital to Analog Converter ... 386

29.1 Features ..386

29.2 Overview ..386

29.3 Voltage reference selection ...387

29.4 Starting a Conversion ..387

29.5 Output and output channels ..387

29.6 DAC Output model ..387

29.7 DAC clock ..388

29.8 Low Power mode ...388

29.9 Calibration ...388

29.10 Register Description ..390

29.11 Register Summary ...397

30 AC – Analog Comparator .. 398

30.1 Features ..398

30.2 Overview ..398

30.3 Input Sources ..399

30.4 Signal Compare ...399

30.5 Interrupts and Events ..399
x
8331B–AVR–03/12

Atmel AVR XMEGA AU
30.6 Window Mode ..400

30.7 Input Hysteresis ...400

30.8 Propagation Delay vs. Power Consumption ..400

30.9 Register Description ..401

30.10 Register Summary ...407

30.11 Interrupt vector Summary ..407

31 IEEE 1149.1 JTAG Boundary Scan Interface 408

31.1 Features ..408

31.2 Overview ..408

31.3 TAP - Test Access Port ...408

31.4 JTAG Instructions ..410

31.5 Boundary Scan Chain ..412

31.6 Data Registers ...413

32 Program and Debug Interface ... 415

32.1 Features ..415

32.2 Overview ..415

32.3 PDI Physical ..416

32.4 JTAG Physical ...420

32.5 PDI Controller ..423

32.6 Register Description - PDI Instruction and Addressing Registers427

32.7 Register Description – PDI Control and Status Registers429

32.8 Register Summary ...430

33 Memory Programming ... 431

33.1 Features ..431

33.2 Overview ..431

33.3 NVM Controller ..432

33.4 NVM Commands ...432

33.5 NVM Controller Busy Status ..432

33.6 Flash and EEPROM Page Buffers ..433

33.7 Flash and EEPROM Programming Sequences ...434

33.8 Protection of NVM ...435

33.9 Preventing NVM Corruption ...435

33.10 CRC Functionality ..435

33.11 Self-programming and Boot Loader Support ...435

33.12 External Programming ...446
xi
8331B–AVR–03/12

Atmel AVR XMEGA AU
33.13 Register Description ..452

33.14 Register Summary ...452

34 Peripheral Module Address Map .. 453

35 Instruction Set Summary .. 456

36 Appendix A: EBI Timing Diagrams ... 461

36.1 SRAM 3-Port ALE1 CS ..461

36.2 SRAM 3-Port ALE12 CS ..463

36.3 SRAM 4-Port ALE2 CS ..466

36.4 SRAM 4- Port NOALE CS ...468

36.5 LPC 2- Port ALE12 CS ..469

36.6 LPC 3- Port ALE1 CS ..471

36.7 LPC 2- Port ALE1 CS ..472

36.8 SRAM 3- Port ALE1 no CS ..473

36.9 SRAM 4- Port NOALE no CS ..475

36.10 LPC 2- Port ALE12 no CS ...476

36.11 SDRAM init ..478

36.12 SDRAM 8-bit Write ..479

36.13 SDRAM 8-bit read ...483

36.14 SDRAM 4-bit write ...487

36.15 SDRAM 4-bit read ...491

36.16 SRAM refresh ..494

37 Datasheet Revision History .. 498

37.1 8331B – 03/12 ...498

37.2 8331A – 07/11 ...499

Table Of Contents .. i
xii
8331B–AVR–03/12

Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: (+1)(408) 441-0311
Fax: (+1)(408) 487-2600
www.atmel.com

Atmel Asia Limited
Unit 1-5 & 16, 19/F
BEA Tower, Millennium City 5
418 Kwun Tong Road
Kwun Tong, Kowloon
HONG KONG
Tel: (+852) 2245-6100
Fax: (+852) 2722-1369

Atmel Munich GmbH
Business Campus
Parkring 4
D-85748 Garching b. Munich
GERMANY
Tel: (+49) 89-31970-0
Fax: (+49) 89-3194621

Atmel Japan
16F, Shin Osaki Kangyo Bldg.
1-6-4 Osaki Shinagawa-ku
Tokyo 104-0032
JAPAN
Tel: (+81) 3-6417-0300
Fax: (+81) 3-6417-0370

© 2012 Atmel Corporation. All rights reserved.

Atmel®, Atmel logo and combinations thereof, XMEGA®, AVR® and others are registered trademarks or trademarks of Atmel Corpora-
tion or its subsidiaries. Other terms and product names may be trademarks of others.

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to
any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL
TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY
EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT,
INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROF-
ITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or com-
pleteness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice.
Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suit-
able for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applica-
tions intended to support or sustain life.
8331B–AVR–03/12

	1. About the Manual
	1.1 Reading the Manual
	1.2 Resources
	1.3 Recommended Reading

	2. Overview
	3. AVR CPU
	3.1 Features
	3.2 Overview
	3.3 Architectural Overview
	3.4 ALU - Arithmetic Logic Unit
	3.4.1 Hardware Multiplier

	3.5 Program Flow
	3.6 Instruction Execution Timing
	3.7 Status Register
	3.8 Stack and Stack Pointer
	3.9 Register File
	3.9.1 The X-, Y-, and Z- Registers

	3.10 RAMP and Extended Indirect Registers
	3.10.1 RAMPX, RAMPY and RAMPZ Registers
	3.10.2 RAMPD Register
	3.10.3 EIND - Extended Indirect Register

	3.11 Accessing 16-bit Registers
	3.11.1 Accessing 24- and 32-bit Registers

	3.12 Configuration Change Protection
	3.12.1 Sequence for write operation to protected I/O registers
	3.12.2 Sequence for execution of protected SPM/LPM

	3.13 Fuse Lock
	3.14 Register Descriptions
	3.14.1 CCP – Configuration Change Protection register
	3.14.2 RAMPD – Extended Direct Addressing register
	3.14.3 RAMPX – Extended X-Pointer register
	3.14.4 RAMPY – Extended Y-Pointer register
	3.14.5 RAMPZ – Extended Z-Pointer register
	3.14.6 EIND – Extended Indirect register
	3.14.7 SPL – Stack Pointer Register Low
	3.14.8 SPH – Stack Pointer Register High
	3.14.9 SREG – Status Register

	3.15 Register Summary

	4. Memories
	4.1 Features
	4.2 Overview
	4.3 Flash Program Memory
	4.3.1 Application Section
	4.3.2 Application Table Section
	4.3.3 Boot Loader Section
	4.3.4 Production Signature Row
	4.3.5 User Signature Row

	4.4 Fuses and Lockbits
	4.5 Data Memory
	4.6 Internal SRAM
	4.7 EEPROM
	4.8 I/O Memory
	4.8.1 General Purpose I/O Registers

	4.9 External Memory
	4.10 Data Memory and Bus Arbitration
	4.10.1 Bus Priority

	4.11 Memory Timing
	4.12 Device ID and Revision
	4.13 JTAG Disable
	4.14 I/O Memory Protection
	4.15 Register Description – NVM Controller
	4.15.1 ADDR0 – Address register 0
	4.15.2 ADDR1 – Address register 1
	4.15.3 ADDR2 – Address register 2
	4.15.4 DATA0 – Data register 0
	4.15.5 DATA1 – Data register 1
	4.15.6 DATA2 – Data register 2
	4.15.7 CMD – Command Register
	4.15.8 CTRLA – Control register A
	4.15.9 CTRLB – Control register B
	4.15.10 INTCTRL – Interrupt Control register
	4.15.11 STATUS – Status register
	4.15.12 LOCKBITS – Lock Bit register

	4.16 Register Descriptions – Fuses and Lock bits
	4.16.1 FUSEBYTE0 – Fuse Byte 0
	4.16.2 FUSEBYTE1 – Fuse Byte1
	4.16.3 FUSEBYTE2 – Fuse Byte2
	4.16.4 FUSEBYTE4 – Fuse Byte4
	4.16.5 FUSEBYTE5 – Fuse Byte 5
	4.16.6 LOCKBITS – Lock Bit register

	4.17 Register Description – Production Signature Row
	4.17.1 RCOSC2M – Internal 2MHz Oscillator Calibration register
	4.17.2 RCOSC2MA – Internal 2MHz Oscillator Calibration register
	4.17.3 RCOSC32K – Internal 32.768kHz Oscillator Calibration register
	4.17.4 RCOSC32M – Internal 32MHz Oscillator Calibration register
	4.17.5 RCOSC32MA – Internal 32MHz RC Oscillator Calibration register
	4.17.6 LOTNUM0 – Lot Number register 0
	4.17.7 LOTNUM1 – Lot Number register 1
	4.17.8 LOTNUM2 – Lot Number Register 2
	4.17.9 LOTNUM3- Lot Number register 3
	4.17.10 LOTNUM4 – Lot Number register 4
	4.17.11 LOTNUM5 – Lot Number register 5
	4.17.12 WAFNUM – Wafer Number register
	4.17.13 COORDX0 – Wafer Coordinate X register 0
	4.17.14 COORDX1 – Wafer Coordinate X register 1
	4.17.15 COORDY0 – Wafer Coordinate Y register 0
	4.17.16 COORDY1 – Wafer Coordinate Y register 1
	4.17.17 USBCAL0 – USB Calibration register 0
	4.17.18 USBCAL1 – USB Pad Calibration register 1
	4.17.19 RCOSC48M – USB RCOSC Calibration
	4.17.20 ADCACAL0 – ADCA Calibration register 0
	4.17.21 ADCACAL1 – ADCA Calibration register 1
	4.17.22 ADCBCAL0 – ADCB Calibration register 0
	4.17.23 ADCBCAL1 – ADCB Calibration register 1
	4.17.24 TEMPSENSE0 – Temperature Sensor Calibration register 0
	4.17.25 TEMPSENSE1 – Temperature Sensor Calibration register 1
	4.17.26 DACA0OFFCAL – DACA Offset Calibration register
	4.17.27 DACA0GAINCAL – DACA Gain Calibration register
	4.17.28 DACB0OFFCAL – DACB Offset Calibration register
	4.17.29 DACB0GAINCAL – DACB Gain Calibration register
	4.17.30 DACA1OFFCAL – DACA Offset Calibration register
	4.17.31 DACA1GAINCAL – DACA Gain Calibration register
	4.17.32 DACB1OFFCAL – DACB Offset Calibration register
	4.17.33 DACB1GAINCAL – DACB Gain Calibration register

	4.18 Register Description – General Purpose I/O Memory
	4.18.1 GPIORn – General Purpose I/O register n

	4.19 Register Description – External Memory
	4.20 Register Descriptions – MCU Control
	4.20.1 DEVID0 – Device ID register 0
	4.20.2 DEVID1 – Device ID register 1
	4.20.3 DEVID2 – Device ID register 2
	4.20.4 REVID – Revision ID
	4.20.5 JTAGUID – JTAG User ID register
	4.20.6 MCUCR – Control register
	4.20.7 ANAINIT – Analog Initialization register
	4.20.8 EVSYSLOCK – Event System Lock register
	4.20.9 AWEXLOCK – Advanced Waveform Extension Lock register

	4.21 Register Summary - NVM Controller
	4.22 Register Summary - Fuses and Lockits
	4.23 Register Summary - Production Signature Row
	4.24 Register Summary – General Purpose I/O Registers
	4.25 Register Summary – MCU Control
	4.26 Interrupt Vector Summary – NVM Controller

	5. DMAC - Direct Memory Access Controller
	5.1 Features
	5.2 Overview
	5.3 DMA Transaction
	5.3.1 Block Transfer and Repeat
	5.3.2 Burst Transfer

	5.4 Transfer Triggers
	5.5 Addressing
	5.6 Priority Between Channels
	5.7 Double Buffering
	5.8 Transfer Buffers
	5.9 Error detection
	5.10 Software Reset
	5.11 Protection
	5.12 Interrupts
	5.13 Register Description – DMA Controller
	5.13.1 CTRL – Control register
	5.13.2 INTFLAGS – Interrupt Status register
	5.13.3 STATUS – Status register
	5.13.4 TEMPL – Temporary register Low
	5.13.5 TEMPH – Temporary Register High

	5.14 Register Description – DMA Channel
	5.14.1 CTRLA – Control register A
	5.14.2 CTRLB – Control register B
	5.14.3 ADDRCTRL – Address Control register
	5.14.4 TRIGSRC – Trigger Source
	5.14.5 TRFCNTL – Channel Block Transfer Count register L
	5.14.6 TRFCNTH – Channel Block Transfer Count register H
	5.14.7 REPCNT – Repeat Counter register
	5.14.8 SRCADDR0 – Source Address 0
	5.14.9 SRCADDR1 – Channel Source Address 1
	5.14.10 SRCADDR2 – Channel Source Address 2
	5.14.11 DESTADDR0 – Channel Destination Address 0
	5.14.12 DESTADDR1 – Channel Destination Address 1
	5.14.13 DESTADDR2 – Channel Destination Address 2

	5.15 Register Summary – DMA Controller
	5.16 Register Summary – DMA Channel
	5.17 DMA Interrupt Vector Summary

	6. Event System
	6.1 Features
	6.2 Overview
	6.3 Events
	6.3.1 Signaling Events
	6.3.2 Data Events
	6.3.3 Peripheral Clock Events
	6.3.4 Software Events

	6.4 Event Routing Network
	6.5 Event Timing
	6.6 Filtering
	6.7 Quadrature Decoder
	6.7.1 Quadrature Operation
	6.7.2 QDEC Setup

	6.8 Register Description
	6.8.1 CHnMUX – Event Channel n Multiplexer register
	6.8.2 CHnCTRL – Event Channel n Control register
	6.8.3 STROBE – Strobe register
	6.8.4 DATA – Data register

	6.9 Register Summary

	7. System Clock and Clock Options
	7.1 Features
	7.2 Overview
	7.3 Clock Distribution
	7.3.1 System Clock - ClkSYS
	7.3.2 CPU Clock - ClkCPU
	7.3.3 Peripheral Clock - ClkPER
	7.3.4 Peripheral 2x/4x Clocks - ClkPER2/ClkPER4
	7.3.5 Asynchronous Clock - ClkRTC
	7.3.6 USB Clock - ClkUSB

	7.4 Clock Sources
	7.4.1 Internal Oscillators
	7.4.1.1 32kHz Ultra Low Power Oscillator
	7.4.1.2 32.768kHz Calibrated Oscillator
	7.4.1.3 32MHz Run-time Calibrated Oscillator
	7.4.1.4 2MHz Run-time Calibrated Oscillator

	7.4.2 External Clock Sources
	7.4.2.1 0.4MHz - 16MHz Crystal Oscillator
	7.4.2.2 External Clock Input
	7.4.2.3 32.768kHz Crystal Oscillator

	7.5 System Clock Selection and Prescalers
	7.6 PLL with 1x-31x Multiplication Factor
	7.7 DFLL 2MHz and DFLL 32MHz
	7.8 PLL and External Clock Source Failure Monitor
	7.9 Register Description – Clock
	7.9.1 CTRL – Control register
	7.9.2 PSCTRL – Prescaler register
	7.9.3 LOCK – Lock register
	7.9.4 RTCCTRL – RTC Control register
	7.9.5 USBSCTRL – USB Control register

	7.10 Register Description – Oscillator
	7.10.1 CTRL – Oscillator Control register
	7.10.2 STATUS – Oscillator Status register
	7.10.3 XOSCCTRL – XOSC Control register
	7.10.4 XOSCFAIL – XOSC Failure Detection register
	7.10.5 RC32KCAL – 32kHz Oscillator Calibration register
	7.10.6 PLLCTRL – PLL Control register
	7.10.7 DFLLCTRL – DFLL Control register

	7.11 Register Description – DFLL32M/DFLL2M
	7.11.1 CTRL – DFLL Control register
	7.11.2 CALA – DFLL Calibration Register A
	7.11.3 CALB – DFLL Calibration register B
	7.11.4 COMP1 – DFLL Compare register Byte 1
	7.11.5 COMP2 – DFLL Compare register Byte 2

	7.12 Register Summary - Clock
	7.13 Register Summary - Oscillator
	7.14 Register Summary - DFLL32M/DFLL2M
	7.15 Oscillator Failure Interrupt Vector Summary

	8. Power Management and Sleep Modes
	8.1 Features
	8.2 Overview
	8.3 Sleep Modes
	8.3.1 Idle Mode
	8.3.2 Power-down Mode
	8.3.3 Power-save Mode
	8.3.4 Standby Mode
	8.3.5 Extended Standby Mode

	8.4 Power Reduction Registers
	8.5 Minimizing Power Consumption
	8.5.1 Analog-to-Digital Converter - ADC
	8.5.2 Analog Comparator - AC
	8.5.3 Brownout Detector
	8.5.4 Watchdog Timer
	8.5.5 Port Pins

	8.6 Register Description – Sleep
	8.6.1 CTRL – Control register

	8.7 Register Description – Power Reduction
	8.7.1 PRGEN – General Power Reduction register
	8.7.2 PRPA/B – Power Reduction Port A/B register
	8.7.3 PRPC/D/E/F – Power Reduction Port C/D/E/F register

	8.8 Register Summary – Sleep
	8.9 Register Summary – Power Reduction

	9. Reset System
	9.1 Features
	9.2 Overview
	9.3 Reset Sequence
	9.3.1 Reset Counter
	9.3.2 Oscillator Startup

	9.4 Reset Sources
	9.4.1 Power-on Reset
	9.4.2 Brownout Detection
	9.4.3 External Reset
	9.4.4 Watchdog Reset
	9.4.5 Software Reset
	9.4.6 Program and Debug Interface Reset

	9.5 Register Description
	9.5.1 STATUS – Status register
	9.5.2 CTRL – Control register

	9.6 Register Summary

	10. Battery Backup System
	10.1 Features
	10.2 Overview
	10.3 Battery Backup System
	10.3.1 Power Supervisor
	10.3.2 Power Switch
	10.3.3 Crystal Oscillator with Failure Monitor
	10.3.4 32-bit Real-time Counter
	10.3.5 Backup Registers

	10.4 Configuration
	10.5 Operation
	10.5.1 Main Power Loss
	10.5.2 Main Power Restore and Start-up Sequence

	10.6 Register Description
	10.6.1 CTRL: Control register
	10.6.2 STATUS: Status register
	10.6.3 BACKUP0: Backup register 0
	10.6.4 BACKUP1: Battery Backup register 1

	10.7 Register Summary

	11. WDT – Watchdog Timer
	11.1 Features
	11.2 Overview
	11.3 Normal Mode Operation
	11.4 Window Mode Operation
	11.5 Watchdog Timer Clock
	11.6 Configuration Protection and Lock
	11.7 Registers Description
	11.7.1 CTRL – Control register
	11.7.2 WINCTRL – Window Mode Control register
	11.7.3 STATUS – Status register

	11.8 Register Summary

	12. Interrupts and Programmable Multilevel Interrupt Controller
	12.1 Features
	12.2 Overview
	12.3 Operation
	12.4 Interrupts
	12.4.1 NMI – Non-Maskable Interrupts
	12.4.2 Interrupt Response Time

	12.5 Interrupt level
	12.6 Interrupt priority
	12.6.1 Static priority
	12.6.2 Round-robin Scheduling

	12.7 Interrupt vector locations
	12.8 Register Description
	12.8.1 STATUS – Status register
	12.8.2 INTPRI – Interrupt priority register
	12.8.3 CTRL – Control register

	12.9 Register Summary

	13. I/O Ports
	13.1 Features
	13.2 Overview
	13.3 I/O Pin Use and Configuration
	13.3.1 Totem-pole
	13.3.1.1 Totem-pole with Pull-down
	13.3.1.2 Totem-pole with Pull-up

	13.3.2 Bus-keeper
	13.3.3 Wired-OR
	13.3.4 Wired-AND

	13.4 Reading the Pin Value
	13.5 Input Sense Configuration
	13.6 Port Interrupt
	13.7 Port Event
	13.8 Alternate Port Functions
	13.9 Slew Rate Control
	13.10 Clock and Event Output
	13.11 Multi-pin configuration
	13.12 Virtual Ports
	13.13 Register Descriptions – Ports
	13.13.1 DIR – Data Direction register
	13.13.2 DIRSET – Data Direction Set Register
	13.13.3 DIRCLR – Data Direction Clear register
	13.13.4 DIRTGL – Data Direction Toggle register
	13.13.5 OUT – Data Output Value
	13.13.6 OUTSET – Data Output Value Set register
	13.13.7 OUTCLR – Data Output Value Clear Register
	13.13.8 OUTTGL – Data Output Value Toggle register
	13.13.9 IN – Data Input Value register
	13.13.10 INTCTRL – Interrupt Control Register
	13.13.11 INT0MASK – Interrupt 0 Mask register
	13.13.12 INT1MASK – Interrupt 1 Mask register
	13.13.13 INTFLAGS – Interrupt Flag register
	13.13.14 REMAP – Pin Remap register
	13.13.15 PINnCTRL – Pin n Configuration Register

	13.14 Register Descriptions – Port Configuration
	13.14.1 MPCMASK – Multi-pin Configuration Mask register
	13.14.2 VPCTRLA – Virtual Port-map Control register A
	13.14.3 VPCTRLB – Virtual Port-map Control register B
	13.14.4 CLKEVOUT – Clock and Event Out register
	13.14.5 EBIOUT – EBI Output register
	13.14.6 EVCTRL – Event Control register

	13.15 Register Descriptions – Virtual Port
	13.15.1 DIR – Data Direction
	13.15.2 OUT – Data Output Value
	13.15.3 IN – Data Input Value
	13.15.4 INTFLAGS – Interrupt Flag register

	13.16 Register Summary – Ports
	13.17 Register Summary – Port Configuration
	13.18 Register Summary – Virtual Ports
	13.19 Interrupt Vector Summary – Ports

	14. TC0/1 – 16-bit Timer/Counter Type 0 and 1
	14.1 Features
	14.2 Overview
	14.2.1 Definitions

	14.3 Block Diagram
	14.4 Clock and Event Sources
	14.5 Double Buffering
	14.6 Counter Operation
	14.6.1 Normal Operation
	14.6.2 Event Action Controlled Operation
	14.6.3 32-bit Operation
	14.6.4 Changing the Period

	14.7 Capture Channel
	14.7.1 Input Capture
	14.7.2 Frequency Capture
	14.7.3 Pulse Width Capture
	14.7.4 32-bit Input Capture
	14.7.5 Capture Overflow

	14.8 Compare Channel
	14.8.1 Waveform Generation
	14.8.2 Frequency (FRQ) Waveform Generation
	14.8.3 Single-slope PWM Generation
	14.8.4 Dual-slope PWM
	14.8.5 Port Override for Waveform Generation

	14.9 Interrupts and events
	14.10 DMA Support
	14.11 Timer/Counter Commands
	14.12 Register Description
	14.12.1 CTRLA – Control register A
	14.12.2 CTRLB – Control register B
	14.12.3 CTRLC – Control register C
	14.12.4 CTRLD – Control register D
	14.12.5 CTRLE – Control register E
	14.12.6 INTCTRLA – Interrupt Enable register A
	14.12.7 INTCTRLB – Interrupt Enable register B
	14.12.8 CTRLFCLR/CTRLFSET – Control register F Clear/Set
	14.12.9 CTRLGCLR/CTRLGSET – Control register G Clear/Set
	14.12.10 INTFLAGS – Interrupt Flag register
	14.12.11 TEMP – Temporary register for 16-bit Access
	14.12.12 CNTL – Counter register L
	14.12.13 CNTH – Counter register H
	14.12.14 PERL – Period register L
	14.12.15 PERH – Period register H
	14.12.16 CCxL – Compare or Capture x register L
	14.12.17 CCxH – Compare or Capture x register H
	14.12.18 PERBUFL – Timer/Counter Period Buffer L
	14.12.19 PERBUFH – Timer/Counter Period Buffer H
	14.12.20 CCxBUFL – Compare or Capture x Buffer register L
	14.12.21 CCxBUFH – Compare or Capture x Buffer register H

	14.13 Register Summary
	14.14 Interrupt Vector Summary

	15. TC2 – 16-bit Timer/Counter Type 2
	15.1 Features
	15.2 Overview
	15.3 Block Diagram
	15.4 Clock Sources
	15.5 Counter Operation
	15.5.1 Changing the Period

	15.6 Compare Channel
	15.6.1 Waveform Generation
	15.6.2 Single-slope PWM Generation
	15.6.3 Port Override for Waveform Generation

	15.7 Interrupts and Events
	15.8 DMA Support
	15.9 Timer/Counter Commands
	15.10 Register Description
	15.10.1 CTRLA – Control register A
	15.10.2 CTRLB – Control register B
	15.10.3 CTRLC – Control register C
	15.10.4 CTRLE – Control register E
	15.10.5 INTCTRLA – Interrupt Enable register A
	15.10.6 INTCTRLB – Interrupt Enable register B
	15.10.7 CTRLF – Control register F
	15.10.8 INTFLAGS – Interrupt Flag register
	15.10.9 LCNT – Low-byte Count register
	15.10.10 HCNT – High-byte Count register
	15.10.11 LPER – Low-byte Period register
	15.10.12 HPER – High-byte Period register
	15.10.13 LCMPx – Low-byte Compare register x
	15.10.14 HCMPx – High-byte Compare register x

	15.11 Register Summary
	15.12 Interrupt Vector Summary

	16. AWeX – Advanced Waveform Extension
	16.1 Features
	16.2 Overview
	16.3 Port Override
	16.4 Dead-time Insertion
	16.5 Pattern Generation
	16.6 Fault Protection
	16.6.1 Fault Actions
	16.6.2 Fault Restore Modes
	16.6.3 Change Protection
	16.6.4 On-Chip Debug

	16.7 Register Description
	16.7.1 CTRL – Control register
	16.7.2 FDEMASK – Fault Detect Event Mask register
	16.7.3 FDCTRL - Fault Detection Control register
	16.7.4 STATUS – Status register
	16.7.5 DTBOTH – Dead-time Concurrent Write to Both Sides
	16.7.6 DTBOTHBUF – Dead-time Concurrent Write to Both Sides Buffer register
	16.7.7 DTLS – Dead-time Low Side register
	16.7.8 DTHS – Dead-time High Side register
	16.7.9 DTLSBUF – Dead-time Low Side Buffer register
	16.7.10 DTHSBUF – Dead-time High Side Buffer register
	16.7.11 OUTOVEN – Output Override Enable register

	16.8 Register Summary

	17. Hi-Res – High-Resolution Extension
	17.1 Features
	17.2 Overview
	17.3 Register Description
	17.3.1 CTRLA – Control register A

	17.4 Register Summary

	18. RTC – Real-Time Counter
	18.1 Features
	18.2 Overview
	18.2.1 Clock Domains
	18.2.2 Interrupts and Events

	18.3 Register Descriptions
	18.3.1 CTRL – Control register
	18.3.2 STATUS – Status register
	18.3.3 INTCTRL – Interrupt Control register
	18.3.4 INTFLAGS – Interrupt Flag register
	18.3.5 TEMP – Temporary Register
	18.3.6 CNTL – Counter Register Low
	18.3.7 CNTH – Counter Register High
	18.3.8 PERL – Period Register Low
	18.3.9 PERH – Period Register High
	18.3.10 COMPL – Compare Register Low
	18.3.11 COMPH – Compare Register High

	18.4 Register Summary
	18.5 Interrupt Vector Summary

	19. RTC32 – 32-bit Real-Time Counter
	19.1 Features
	19.2 Overview
	19.2.1 Clock selection
	19.2.2 Clock Domains
	19.2.3 Power Domains
	19.2.4 Interrupts and Events

	19.3 Register Descriptions
	19.3.1 CTRL – Control register
	19.3.2 SYNCCTRL – Synchronisation Control/Status register
	19.3.3 INTCTRL – Interrupt Control register
	19.3.4 INTFLAGS – Interrupt Flag register
	19.3.5 CNT0 – Counter register 0
	19.3.6 CNT1 – Counter register 1
	19.3.7 CNT2 – Counter register 2
	19.3.8 CNT3 – Counter register 3
	19.3.9 PER0 – Period register 0
	19.3.10 PER1 – Period register 1
	19.3.11 PER2 – Period register 2
	19.3.12 PER3 – Period register 3
	19.3.13 COMP0 – Compare register 0
	19.3.14 COMP1 – Compare register 1
	19.3.15 COMP2 – Compare register 2
	19.3.16 COMP3 – Compare register 3

	19.4 Register Summary
	19.5 Interrupt Vector Summary

	20. USB – Universal Serial Bus Interface
	20.1 Features
	20.2 Overview
	20.3 Operation
	20.3.1 Start of Frame
	20.3.2 SETUP
	20.3.3 OUT
	20.3.4 IN

	20.4 SRAM Memory Mapping
	20.5 Clock Generation
	20.6 Ping-pong Operation
	20.7 Multipacket Transfers
	20.7.1 For Input Endpoints
	20.7.2 For Output Endpoints

	20.8 Auto Zero Length Packet
	20.9 Transaction Complete FIFO
	20.10 Interrupts and Events
	20.10.1 Transaction Complete Interrupt
	20.10.2 Bus Event Interrupt
	20.10.3 Events

	20.11 VBUS Detection
	20.12 On-chip Debug
	20.13 Register Description – USB
	20.13.1 CTRLA – Control register A
	20.13.2 CTRLB – Control register B
	20.13.3 STATUS – Status register
	20.13.4 ADDR – Address register
	20.13.5 FIFOWP – FIFO Write Pointer register
	20.13.6 FIFORP – FIFO Read Pointer register
	20.13.7 EPPTRL – Endpoint Configuration Table Pointer Low Byte
	20.13.8 EPPTRH – Endpoint Configuration Table Pointer High byte
	20.13.9 INTCTRLA – Interrupt Control register A
	20.13.10 INTCTRLB – Interrupt Control register B
	20.13.11 INTFLAGSACLR/ INTFLAGSASET – Clear/ Set Interrupt Flag register A
	20.13.12 INTFLAGSBCLR/INTFLAGSBSET – Clear/Set Interrupt Flag eegister B
	20.13.13 CALL – Calibration Low
	20.13.14 CALH – Calibration High

	20.14 Register Description – USB Endpoint
	20.14.1 STATUS – Status register
	20.14.2 CTRL – Control
	20.14.3 CNTL – Counter Low
	20.14.4 CNTH – Counter High
	20.14.5 DATAPTRL – Data Pointer Low
	20.14.6 DATAPTRH – Data Pointer High
	20.14.7 AUXDATAL – Auxiliary Data Low
	20.14.8 AUXDATAH – Auxiliary Data High

	20.15 Register Description – Frame
	20.15.1 FRAMENUML – Frame Number Low
	20.15.2 FRAMENUMH – Frame Number High

	20.16 Register Summary – USB Module
	20.17 Register Summary – USB Endpoint
	20.18 Register Summary – Frame
	20.19 USB Interrupt Vector Summary

	21. TWI – Two-Wire Interface
	21.1 Features
	21.2 Overview
	21.3 General TWI Bus Concepts
	21.3.1 Electrical Characteristics
	21.3.2 START and STOP Conditions
	21.3.3 Bit Transfer
	21.3.4 Address Packet
	21.3.5 Data Packet
	21.3.6 Transaction
	21.3.7 Clock and Clock Stretching
	21.3.8 Arbitration
	21.3.9 Synchronization

	21.4 TWI Bus State Logic
	21.5 TWI Master Operation
	21.5.1 Transmitting Address Packets
	21.5.1.1 Case M1: Arbitration lost or bus error during address packet
	21.5.1.2 Case M2: Address packet transmit complete - Address not acknowledged by slave
	21.5.1.3 Case M3: Address packet transmit complete - Direction bit cleared
	21.5.1.4 Case M4: Address packet transmit complete - Direction bit set

	21.5.2 Transmitting Data Packets
	21.5.3 Receiving Data Packets

	21.6 TWI Slave Operation
	21.6.1 Receiving Address Packets
	21.6.1.1 Case S1: Address packet accepted - Direction bit set
	21.6.1.2 Case S2: Address packet accepted - Direction bit cleared
	21.6.1.3 Case S3: Collision
	21.6.1.4 Case S4: STOP condition received.

	21.6.2 Receiving Data Packets
	21.6.3 Transmitting Data Packets

	21.7 Enabling External Driver Interface
	21.8 Register Description – TWI
	21.8.1 CTRL – Common Control Register

	21.9 Register Description – TWI Master
	21.9.1 CTRLA – Control register A
	21.9.2 CTRLB – Control register B
	21.9.3 CTRLC – Control register C
	21.9.4 STATUS – Status register
	21.9.5 BAUD – Baud Rate register
	21.9.6 ADDR – Address register
	21.9.7 DATA – Data register

	21.10 Register Description – TWI Slave
	21.10.1 CTRLA – Control register A
	21.10.2 CTRLB – Control register B
	21.10.3 STATUS – Status register
	21.10.4 ADDR – Address register
	21.10.5 DATA – Data register
	21.10.6 ADDRMASK – Address Mask register

	21.11 Register Summary - TWI
	21.12 Register Summary - TWI Master
	21.13 Register Summary - TWI Slave
	21.14 Interrupt Vector Summary

	22. SPI – Serial Peripheral Interface
	22.1 Features
	22.2 Overview
	22.3 Master Mode
	22.4 Slave Mode
	22.5 Data Modes
	22.6 DMA Support
	22.7 Register Description
	22.7.1 CTRL – Control register
	22.7.2 INTCTRL – Interrupt Control register
	22.7.3 STATUS – Status register
	22.7.4 DATA – Data register

	22.8 Register Summary
	22.9 Interrupt vector Summary

	23. USART
	23.1 Features
	23.2 Overview
	23.3 Clock Generation
	23.3.1 Internal Clock Generation - The Fractional Baud Rate Generator
	23.3.2 External Clock
	23.3.3 Double Speed Operation
	23.3.4 Synchronous Clock Operation
	23.3.5 Master SPI Mode Clock Generation

	23.4 Frame Formats
	23.4.1 Parity Bit Calculation
	23.4.2 SPI Frame Formats

	23.5 USART Initialization
	23.6 Data Transmission - The USART Transmitter
	23.6.1 Sending Frames
	23.6.2 Disabling the Transmitter

	23.7 Data Reception - The USART Receiver
	23.7.1 Receiving Frames
	23.7.2 Receiver Error Flags
	23.7.3 Parity Checker
	23.7.4 Disabling the Receiver
	23.7.5 Flushing the Receive Buffer

	23.8 Asynchronous Data Reception
	23.8.1 Asynchronous Clock Recovery
	23.8.2 Asynchronous Data Recovery
	23.8.3 Asynchronous Operational Range

	23.9 Fractional Baud Rate Generation
	23.10 USART in Master SPI Mode
	23.11 USART SPI vs. SPI
	23.12 Multiprocessor Communication Mode
	23.12.1 Using Multiprocessor Communication Mode

	23.13 IRCOM Mode of Operation
	23.14 DMA Support
	23.15 Register Description
	23.15.1 DATA – Data register
	23.15.2 STATUS – Status register
	23.15.3 CTRLA – Control register A
	23.15.4 CTRLB – Control register B
	23.15.5 CTRLC – Control register C
	23.15.6 BAUDCTRLA – Baud Rate register A
	23.15.7 BAUDCTRLB – Baud Rate register B

	23.16 Register Summary
	23.16.1 Register Description - USART
	23.16.2 Register Description - USART in SPI Master Mode

	23.17 Interrupt Vector Summary

	24. IRCOM - IR Communication Module
	24.1 Features
	24.2 Overview
	24.2.1 Event System Filtering

	24.3 Registers Description
	24.3.1 TXPLCTRL – Transmitter Pulse Length Control Register
	24.3.2 RXPLCTRL – Receiver Pulse Length Control Register
	24.3.3 CTRL – Control Register

	24.4 Register Summary

	25. AES and DES Crypto Engines
	25.1 Features
	25.2 Overview
	25.3 DES Instruction
	25.4 AES Crypto Module
	25.4.1 Key and State Memory
	25.4.2 DMA Support

	25.5 Register Description – AES
	25.5.1 CTRL – Control register
	25.5.2 STATUS – AES Status register
	25.5.3 STATE – AES State register
	25.5.4 KEY – Key register
	25.5.5 INTCTRL – Interrupt Control register

	25.6 Register Summary - AES
	25.7 Interrupt vector Summary - AES

	26. CRC – Cyclic Redundancy Check Generator
	26.1 Features
	26.2 Overview
	26.3 Operation
	26.4 CRC on Flash memory
	26.5 CRC on DMA Data
	26.6 CRC using the I/O Interface
	26.7 Register Description
	26.7.1 CTRL – Control register
	26.7.2 STATUS – Status register
	26.7.3 DATAIN – Data Input Register
	26.7.4 CHECKSUM0 – Checksum Byte 0
	26.7.5 CHECKSUM1 – Checksum Byte 1
	26.7.6 CHECKSUM2 – Checksum Byte 2
	26.7.7 CHECKSUM3 – CRC Checksum Byte 3

	26.8 Register Sumary

	27. EBI – External Bus Interface
	27.1 Features
	27.2 Overview
	27.3 Chip Select
	27.3.1 Base Address
	27.3.2 Address Size
	27.3.3 Chip Select as Address Lines

	27.4 EBI Clock
	27.5 SRAM Configuration
	27.5.1 No Multiplexing
	27.5.2 Multiplexing address byte 0 and 1
	27.5.3 Multiplexing address byte 0 and 2
	27.5.4 Multiplexing address byte 0, 1and 2
	27.5.5 Address Latches
	27.5.6 Timing

	27.6 SRAM LPC Configuration
	27.6.1 Multiplexing Data with Address Byte 0
	27.6.2 Multiplexing Data with Address Byte 0 and 1

	27.7 SDRAM Configuration
	27.7.1 Supported Commands
	27.7.2 Three-Port EBI Configuration
	27.7.3 Four-Port EBI Configuration
	27.7.4 Timing
	27.7.5 Initialization
	27.7.6 Refresh

	27.8 Combined SRAM & SDRAM Configuration
	27.9 I/O Pin and Pin-out Configuration
	27.10 Register Description – EBI
	27.10.1 CTRL – Control register
	27.10.2 SDRAMCTRLA – SDRAM Control register A
	27.10.3 REFRESH – SDRAM Refresh Period Register
	27.10.4 INITDLY – SDRAM Initialization Delay register
	27.10.5 SDRAMCTRLB – SDRAM Control register B
	27.10.6 SDRAMCTRLC – SDRAM Control register C

	27.11 Register Description – EBI Chip Select
	27.11.1 CTRLA – Control register A
	27.11.2 CTRLB (SRAM) – Control register B
	27.11.3 CTRLB (SDRAM) – Control register B
	27.11.4 BASEADDR – Base Address register

	27.12 Register Summary - EBI
	27.13 Register Summary - EBI Chip Select

	28. ADC – Analog-to-Digital Converter
	28.1 Features
	28.2 Overview
	28.3 Input Sources
	28.3.1 Differential Input
	28.3.2 Differential Input with Gain
	28.3.3 Single-ended Input
	28.3.4 Internal Inputs

	28.4 ADC Channels
	28.5 Voltage Reference Selection
	28.6 Conversion Result
	28.7 Compare Function
	28.8 Starting a Conversion
	28.8.1 Input Source Scan

	28.9 ADC Clock and Conversion Timing
	28.9.1 Single Conversion without Gain
	28.9.2 Single Conversion with Gain
	28.9.3 Single Conversions on Two ADC Channels
	28.9.4 Single Conversions on Two ADC Channels, CH0 with Gain
	28.9.5 Single Conversions on Two ADC Channels, CH1 with Gain
	28.9.6 Free Running Mode on Two ADC Channels with Gain

	28.10 ADC Input Model
	28.10.1 Gain Stage Impedance mode

	28.11 DMA Transfer
	28.12 Interrupts and Events
	28.13 Calibration
	28.14 Channel Priority
	28.15 Synchronous Sampling
	28.15.1 Synchronous sampling of two ADC inputs
	28.15.2 Synchronous sampling on event
	28.15.3 Synchronous sampling of two ADCs

	28.16 Register Description – ADC
	28.16.1 CTRLA – Control register A
	28.16.2 CTRLB – ADC Control register B
	28.16.3 REFCTRL – Reference Control register
	28.16.4 EVCTRL – Event Control register
	28.16.5 PRESCALER – Clock Prescaler register
	28.16.6 INTFLAGS – Interrupt Flag register
	28.16.7 TEMP – Temporary register
	28.16.8 CALL – Calibration Value register
	28.16.9 CALH – Calibration Value register
	28.16.10 CHnRESH – Channel n Result Register High
	28.16.10.1 12-bit Mode, Left Adjusted
	28.16.10.2 12-bit Mode, Right Adjusted
	28.16.10.3 8-bit Mode

	28.16.11 CHnRESL – Channel n Result register Low
	28.16.11.1 12-/8-bit Mode
	28.16.11.2 12-bit Mode, Left Adjusted

	28.16.12 CMPH – Compare Register High
	28.16.13 CMPL – Compare Register Low

	28.17 Register Description - ADC Channel
	28.17.1 CTRL – Channel Control Register
	28.17.2 MUXCTRL – ADC Channel MUX Control registers
	28.17.3 INTCTRL – Channel Interrupt Control registers
	28.17.4 INTFLAGS – ADC Channel Interrupt Flag registers
	28.17.5 RESH – Channel n Result register High
	28.17.5.1 12-bit Mode, Left Adjusted
	28.17.5.2 12-bit Mode, Right Adjusted
	28.17.5.3 8-bit Mode

	28.17.6 RESL – Channel n Result register Low
	28.17.6.1 12-/8-bit Mode
	28.17.6.2 12-bit Mode, Left Adjusted

	28.17.7 SCAN – Channel Scan register

	28.18 Register Summary – ADC
	28.19 Register Summary – ADC Channel
	28.20 Interrupt vector Summary

	29. DAC – Digital to Analog Converter
	29.1 Features
	29.2 Overview
	29.3 Voltage reference selection
	29.4 Starting a Conversion
	29.5 Output and output channels
	29.6 DAC Output model
	29.7 DAC clock
	29.8 Low Power mode
	29.9 Calibration
	29.10 Register Description
	29.10.1 CTRLA – Control Register A
	29.10.2 CTRLB – Control Register B
	29.10.3 CTRLC – Control Register C
	29.10.4 EVCTRL – Event Control Register
	29.10.5 STATUS – Status Register
	29.10.6 CH0DATAH – Channel 0 Data Register High
	29.10.6.1 Right-adjusted
	29.10.6.2 Left-adjusted

	29.10.7 CH0DATAL – Channel 0 Data Register Low
	29.10.7.1 Right-adjusted
	29.10.7.2 Left-adjusted

	29.10.8 CH1DATAH – Channel 1 Data Register High
	29.10.8.1 Right-adjusted
	29.10.8.2 Left-adjusted

	29.10.9 CH1DATAL – Channel 1 Data Register Low
	29.10.9.1 Right-adjusted
	29.10.9.2 Left-adjusted

	29.10.10 CH0GAINCAL – Gain Calibration Register
	29.10.11 CH0OFFSETCAL – Offset Calibration Register
	29.10.12 CH1GAINCAL – Gain Calibration Register
	29.10.13 CH0OFFSETCAL – Offset Calibration Register

	29.11 Register Summary

	30. AC – Analog Comparator
	30.1 Features
	30.2 Overview
	30.3 Input Sources
	30.3.1 Pin Inputs
	30.3.2 Internal Inputs

	30.4 Signal Compare
	30.5 Interrupts and Events
	30.6 Window Mode
	30.7 Input Hysteresis
	30.8 Propagation Delay vs. Power Consumption
	30.9 Register Description
	30.9.1 ACnCTRL – Analog Comparator n Control register
	30.9.2 ACnMUXCTRL – Analog Comparator n Mux Control register
	30.9.3 CTRLA – Control register A
	30.9.4 CTRLB – Control register B
	30.9.5 WINCTRL – Window Function Control register
	30.9.6 STATUS – Status register
	30.9.7 CURRCTRL – Current Source Control register
	30.9.8 CURRCALIB – Current Source Calibration register

	30.10 Register Summary
	30.11 Interrupt vector Summary

	31. IEEE 1149.1 JTAG Boundary Scan Interface
	31.1 Features
	31.2 Overview
	31.3 TAP - Test Access Port
	31.4 JTAG Instructions
	31.4.1 EXTEST; 0x1
	31.4.2 IDCODE; 0x3
	31.4.3 SAMPLE/PRELOAD; 0x2
	31.4.4 BYPASS; 0xf
	31.4.5 CLAMP; 0x4
	31.4.6 HIGHZ; 0x5
	31.4.7 PDICOM; 0x7

	31.5 Boundary Scan Chain
	31.5.1 Scanning the Port Pins
	31.5.2 Scanning the PDI Pins

	31.6 Data Registers
	31.6.1 Bypass Register
	31.6.2 Device Identification Register
	31.6.2.1 Version
	31.6.2.2 Part Number
	31.6.2.3 Manufacturer ID

	31.6.3 Boundary Scan Chain
	31.6.4 PDICOM Data Register

	32. Program and Debug Interface
	32.1 Features
	32.2 Overview
	32.3 PDI Physical
	32.3.1 Enabling
	32.3.2 Disabling
	32.3.3 Frame Format and Characters
	32.3.4 Serial Transmission and Reception
	32.3.5 Serial Transmission
	32.3.6 Serial Reception
	32.3.7 Direction Change
	32.3.8 Drive Contention and Collision Detection

	32.4 JTAG Physical
	32.4.1 Enabling
	32.4.2 Disabling
	32.4.3 JTAG Instruction Set
	32.4.3.1 The PDICOM Instruction

	32.4.4 Frame Format and Characters
	32.4.5 Serial transmission and reception
	32.4.6 Serial Transmission
	32.4.7 Serial Reception

	32.5 PDI Controller
	32.5.1 Switching between PDI and JTAG modes
	32.5.2 Accessing Internal Interfaces
	32.5.3 NVM Programming Key
	32.5.4 Exception Handling
	32.5.5 Reset Signalling
	32.5.6 Instruction Set
	32.5.6.1 LDS - Load Data from PDIBUS Data Space using Direct Addressing
	32.5.6.2 STS - Store Data to PDIBUS Data Space using Direct Addressing
	32.5.6.3 LD - Load Data from PDIBUS Data Space using Indirect Addressing
	32.5.6.4 ST - Store Data to PDIBUS Data Space using Indirect Addressing
	32.5.6.5 LDCS - Load Data from PDI Control and Status Register Space
	32.5.6.6 STCS - Store Data to PDI Control and Status Register Space
	32.5.6.7 KEY - Set Activation Key
	32.5.6.8 REPEAT - Set Instruction Repeat Counter

	32.5.7 Instruction Set Summary

	32.6 Register Description - PDI Instruction and Addressing Registers
	32.6.1 Instruction Register
	32.6.2 Pointer Register
	32.6.3 Repeat Counter Register
	32.6.4 Operand Count Register

	32.7 Register Description – PDI Control and Status Registers
	32.7.1 STATUS – Status register
	32.7.2 RESET – Reset register
	32.7.3 CTRL – Control register

	32.8 Register Summary

	33. Memory Programming
	33.1 Features
	33.2 Overview
	33.3 NVM Controller
	33.4 NVM Commands
	33.4.1 Action-triggered Commands
	33.4.2 NVM Read-triggered Commands
	33.4.3 NVM Write-triggered Commands
	33.4.4 Write/Execute Protection

	33.5 NVM Controller Busy Status
	33.6 Flash and EEPROM Page Buffers
	33.6.1 Flash Page Buffer
	33.6.2 EEPROM Page Buffer

	33.7 Flash and EEPROM Programming Sequences
	33.7.1 Flash Programming Sequence
	33.7.2 EEPROM Programming Sequence

	33.8 Protection of NVM
	33.9 Preventing NVM Corruption
	33.10 CRC Functionality
	33.11 Self-programming and Boot Loader Support
	33.11.1 Flash Programming
	33.11.1.1 Application and Boot Loader Sections
	33.11.1.2 Addressing the Flash

	33.11.2 NVM Flash Commands
	33.11.2.1 Read Flash
	33.11.2.2 Erase Flash Page Buffer
	33.11.2.3 Load Flash Page Buffer
	33.11.2.4 Erase Flash Page
	33.11.2.5 Write Flash Page
	33.11.2.6 Flash Range CRC
	33.11.2.7 Erase Application Section
	33.11.2.8 Erase Application Section / Boot Loader Section Page
	33.11.2.9 Application Section / Boot Loader Section Page Write
	33.11.2.10 Erase and Write Application Section / Boot Loader Section Page
	33.11.2.11 Application Section / Boot Loader Section CRC
	33.11.2.12 Erase User Signature Row
	33.11.2.13 Write User Signature Row
	33.11.2.14 Read User Signature Row / Calibration Row

	33.11.3 NVM Fuse and Lock Bit Commands
	33.11.3.1 Write Lock Bits
	33.11.3.2 Read Fuses

	33.11.4 EEPROM Programming
	33.11.4.1 Addressing the EEPROM

	33.11.5 NVM EEPROM Commands
	33.11.5.1 Load EEPROM Page Buffer
	33.11.5.2 Erase EEPROM Page Buffer
	33.11.5.3 Erase EEPROM Page
	33.11.5.4 Write EEPROM Page
	33.11.5.5 Erase and Write EEPROM Page
	33.11.5.6 Erase EEPROM
	33.11.5.7 Read EEPROM

	33.12 External Programming
	33.12.1 Enabling External Programming Interface
	33.12.2 NVM Programming
	33.12.3 NVM Commands
	33.12.3.1 Chip Erase
	33.12.3.2 Read NVM
	33.12.3.3 Erase Page Buffer
	33.12.3.4 Load Page Buffer
	33.12.3.5 Erase Page
	33.12.3.6 Write Page
	33.12.3.7 Erase and Write Page
	33.12.3.8 Erase Application/ Boot Loader/ EEPROM Section
	33.12.3.9 Application / Boot Section CRC
	33.12.3.10 Flash CRC
	33.12.3.11 Write Fuse/ Lock Bit

	33.13 Register Description
	33.14 Register Summary

	34. Peripheral Module Address Map
	35. Instruction Set Summary
	36. Appendix A: EBI Timing Diagrams
	36.1 SRAM 3-Port ALE1 CS
	36.2 SRAM 3-Port ALE12 CS
	36.3 SRAM 4-Port ALE2 CS
	36.4 SRAM 4- Port NOALE CS
	36.5 LPC 2- Port ALE12 CS
	36.6 LPC 3- Port ALE1 CS
	36.7 LPC 2- Port ALE1 CS
	36.8 SRAM 3- Port ALE1 no CS
	36.9 SRAM 4- Port NOALE no CS
	36.10 LPC 2- Port ALE12 no CS
	36.11 SDRAM init
	36.12 SDRAM 8-bit Write
	36.13 SDRAM 8-bit read
	36.14 SDRAM 4-bit write
	36.15 SDRAM 4-bit read
	36.16 SRAM refresh

	37. Datasheet Revision History
	37.1 8331B – 03/12
	37.2 8331A – 07/11

	Table Of Contents

